Cargando…
The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies?
Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has b...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879787/ https://www.ncbi.nlm.nih.gov/pubmed/35216315 http://dx.doi.org/10.3390/ijms23042197 |
_version_ | 1784658990983020544 |
---|---|
author | Mposhi, Archibold Liang, Lin Mennega, Kevin P. Yildiz, Dilemin Kampert, Crista Hof, Ingrid H. Jellema, Pytrick G. de Koning, Tom J. Faber, Klaas Nico Ruiters, Marcel H. J. Niezen-Koning, Klary E. Rots, Marianne G. |
author_facet | Mposhi, Archibold Liang, Lin Mennega, Kevin P. Yildiz, Dilemin Kampert, Crista Hof, Ingrid H. Jellema, Pytrick G. de Koning, Tom J. Faber, Klaas Nico Ruiters, Marcel H. J. Niezen-Koning, Klary E. Rots, Marianne G. |
author_sort | Mposhi, Archibold |
collection | PubMed |
description | Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies. |
format | Online Article Text |
id | pubmed-8879787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88797872022-02-26 The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? Mposhi, Archibold Liang, Lin Mennega, Kevin P. Yildiz, Dilemin Kampert, Crista Hof, Ingrid H. Jellema, Pytrick G. de Koning, Tom J. Faber, Klaas Nico Ruiters, Marcel H. J. Niezen-Koning, Klary E. Rots, Marianne G. Int J Mol Sci Article Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies. MDPI 2022-02-16 /pmc/articles/PMC8879787/ /pubmed/35216315 http://dx.doi.org/10.3390/ijms23042197 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mposhi, Archibold Liang, Lin Mennega, Kevin P. Yildiz, Dilemin Kampert, Crista Hof, Ingrid H. Jellema, Pytrick G. de Koning, Tom J. Faber, Klaas Nico Ruiters, Marcel H. J. Niezen-Koning, Klary E. Rots, Marianne G. The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? |
title | The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? |
title_full | The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? |
title_fullStr | The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? |
title_full_unstemmed | The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? |
title_short | The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? |
title_sort | mitochondrial epigenome: an unexplored avenue to explain unexplained myopathies? |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879787/ https://www.ncbi.nlm.nih.gov/pubmed/35216315 http://dx.doi.org/10.3390/ijms23042197 |
work_keys_str_mv | AT mposhiarchibold themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT lianglin themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT mennegakevinp themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT yildizdilemin themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT kampertcrista themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT hofingridh themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT jellemapytrickg themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT dekoningtomj themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT faberklaasnico themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT ruitersmarcelhj themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT niezenkoningklarye themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT rotsmarianneg themitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT mposhiarchibold mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT lianglin mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT mennegakevinp mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT yildizdilemin mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT kampertcrista mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT hofingridh mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT jellemapytrickg mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT dekoningtomj mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT faberklaasnico mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT ruitersmarcelhj mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT niezenkoningklarye mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies AT rotsmarianneg mitochondrialepigenomeanunexploredavenuetoexplainunexplainedmyopathies |