Cargando…
Deep Reinforcement Learning Based Optical and Acoustic Dual Channel Multiple Access in Heterogeneous Underwater Sensor Networks
In this paper, we investigate how to efficiently utilize channel bandwidth in heterogeneous hybrid optical and acoustic underwater sensor networks, where sensor nodes adopt different Media Access Control (MAC) protocols to transmit data packets to a common relay node on optical or acoustic channels....
Autores principales: | Liu, Enhong, He, Rongxi, Chen, Xiaojing, Yu, Cunqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880241/ https://www.ncbi.nlm.nih.gov/pubmed/35214530 http://dx.doi.org/10.3390/s22041628 |
Ejemplares similares
-
Energy-Efficient Depth-Based Opportunistic Routing with Q-Learning for Underwater Wireless Sensor Networks
por: Lu, Yongjie, et al.
Publicado: (2020) -
Spread Spectrum Modulation with Grassmannian Constellations for Mobile Multiple Access Underwater Acoustic Channels
por: Bernard, Christophe, et al.
Publicado: (2022) -
Packet Flow Based Reinforcement Learning MAC Protocol for Underwater Acoustic Sensor Networks
por: Alhassan, Ibrahim B., et al.
Publicado: (2021) -
Distributed Learning for Dynamic Channel Access in Underwater Sensor Networks
por: Shin, Huicheol, et al.
Publicado: (2020) -
Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization
por: Saeed, Nasir, et al.
Publicado: (2017)