Cargando…
Formulation and Evaluation of Self-Nanoemulsifying Drug Delivery System Derived Tablet Containing Sertraline
Being a biopharmaceutics classification system class II drug, the absorption of sertraline from the gut is mainly limited by its poor aqueous solubility. The objective of this investigation was to improve the solubility of sertraline utilizing self-nanoemulsifying drug delivery systems (SNEDDS) and...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880292/ https://www.ncbi.nlm.nih.gov/pubmed/35214068 http://dx.doi.org/10.3390/pharmaceutics14020336 |
Sumario: | Being a biopharmaceutics classification system class II drug, the absorption of sertraline from the gut is mainly limited by its poor aqueous solubility. The objective of this investigation was to improve the solubility of sertraline utilizing self-nanoemulsifying drug delivery systems (SNEDDS) and developing it into a tablet dosage form. Ternary phase diagrams were created to identify nanoemulsion regions by fixing oil (glycerol triacetate) and water while varying the surfactant (Tween 80) and co-surfactant (PEG 200) ratio (S(mix)). A three-factor, two-level (2(3)) full factorial design (batches F1–F8) was utilized to check the effect of independent variables on dependent variables. Selected SNEDDS (batch F4) was solidified into powder by solid carrier adsorption method and compressed into tablets. The SNEDDS-loaded tablets were characterized for various pharmaceutical properties, drug release and evaluated in vivo in Wistar rats. A larger isotropic region was noticed with a S(mix) ratio of 2:1 and the nanoemulsion exhibited good stability. Screening studies’ data established that all three independent factors influence the dependent variables. The prepared tablets displayed optimal pharmaceutical properties within acceptable limits. In vitro sertraline release demonstrated from solid SNEDDS was statistically significant (p < 0.0001) as compared to pure sertraline. Differential Scanning Calorimetry and X-Ray Diffraction data established the amorphous state of the drug in SNEDDS formulation, while FTIR spectra indicate the compatibility of excipients and drug. Pharmacokinetic evaluation of the SNEDDS tablet demonstrated significant increment (p < 0.0001) in AUC(0-)(α) (~5-folds), C(max) (~4-folds), and relative bioavailability (386%) as compared to sertraline suspension. The current study concludes that the solid SNEDDS formulation could be a practicable and effective strategy for oral therapy of sertraline. |
---|