Cargando…

Joint Communications and Sensing Employing Multi- or Single-Carrier OFDM Communication Signals: A Tutorial on Sensing Methods, Recent Progress and a Novel Design

Joint communications and sensing (JCAS) has recently attracted extensive attention due to its potential in substantially improving the cost, energy and spectral efficiency of Internet of Things (IoT) systems that need both radio frequency functions. Given the wide applicability of orthogonal frequen...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Kai, Zhang, Jian Andrew, Huang, Xiaojing, Guo, Yingjie Jay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880368/
https://www.ncbi.nlm.nih.gov/pubmed/35214512
http://dx.doi.org/10.3390/s22041613
Descripción
Sumario:Joint communications and sensing (JCAS) has recently attracted extensive attention due to its potential in substantially improving the cost, energy and spectral efficiency of Internet of Things (IoT) systems that need both radio frequency functions. Given the wide applicability of orthogonal frequency division multiplexing (OFDM) in modern communications, OFDM sensing has become one of the major research topics of JCAS. To raise the awareness of some critical yet long-overlooked issues that restrict the OFDM sensing capability, a comprehensive overview of OFDM sensing is provided first in this paper, and then a tutorial on the issues is presented. Moreover, some recent research efforts for addressing the issues are reviewed, with interesting designs and results highlighted. In addition, the redundancy in OFDM sensing signals is unveiled, on which, a novel method is based and developed in order to remove the redundancy by introducing efficient signal decimation. Corroborated by analysis and simulation results, the new method further reduces the sensing complexity over one of the most efficient methods to date, with a minimal impact on the sensing performance.