Cargando…

The Dynamic Behaviour of Multi-Phase Flow on a Polymeric Surface with Various Hydrophobicity and Electric Field Strength

The dynamic behaviour of rain droplets on the insulator surface is a key measure to its reliability and performance. This is due to the fact that the presence and motion of rain droplets cause intensive discharge activities, such as corona and low current arcing, which accelerate the ageing process...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qi, Liu, Rui, Li, Li, Song, Xiaofan, Wang, Yifan, Jiang, Xingliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880393/
https://www.ncbi.nlm.nih.gov/pubmed/35215660
http://dx.doi.org/10.3390/polym14040750
Descripción
Sumario:The dynamic behaviour of rain droplets on the insulator surface is a key measure to its reliability and performance. This is due to the fact that the presence and motion of rain droplets cause intensive discharge activities, such as corona and low current arcing, which accelerate the ageing process and flashovers. This article aims to investigate and characterize the movement of a rain droplet placed on an inclined insulator surface subject to an intensive electric field. The rain droplets’ movement on hydrophobic surfaces in the absence of an electric field is investigated. A high speed camera is used to capture the footage and finite element method (FEM) is used to simulate the multi-physics phenomenon on two polymeric surfaces, namely, silicon rubber (SiR) and PTFE (polytetrafluoroethylene). A ‘creepage’ motion was observed. The inception of motion and the movement speed are analysed in correlation with various surface conditions. Models are established to estimate the moisture and potential discharge characteristics on the inclined polymeric surfaces. They are further utilized to analyse the actual insulators subject to wet conditions.