Cargando…
Modeling of Soft Pneumatic Actuators with Different Orientation Angles Using Echo State Networks for Irregular Time Series Data
Modeling of soft robotics systems proves to be an extremely difficult task, due to the large deformation of the soft materials used to make such robots. Reliable and accurate models are necessary for the control task of these soft robots. In this paper, a data-driven approach using machine learning...
Autores principales: | Youssef, Samuel M., Soliman, MennaAllah, Saleh, Mahmood A., Mousa, Mostafa A., Elsamanty, Mahmoud, Radwan, Ahmed G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880441/ https://www.ncbi.nlm.nih.gov/pubmed/35208339 http://dx.doi.org/10.3390/mi13020216 |
Ejemplares similares
-
Modelling and implementation of soft bio-mimetic turtle using echo state network and soft pneumatic actuators
por: Soliman, MennaAllah, et al.
Publicado: (2021) -
Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control
por: Youssef, Samuel M., et al.
Publicado: (2022) -
Tactile sensing biohybrid soft E-skin based on bioimpedance using aloe vera pulp tissues
por: Mousa, Mostafa A., et al.
Publicado: (2021) -
Design and control of soft biomimetic pangasius fish robot using fin ray effect and reinforcement learning
por: Youssef, Samuel M., et al.
Publicado: (2022) -
Pneumatic Soft Actuators With Kirigami Skins
por: Khosravi, Hesameddin, et al.
Publicado: (2021)