Cargando…

Tropism of Highly Pathogenic Avian Influenza H5 Viruses from the 2020/2021 Epizootic in Wild Ducks and Geese

Highly pathogenic avian influenza (HPAI) outbreaks have become increasingly frequent in wild bird populations and have caused mass mortality in many wild bird species. The 2020/2021 epizootic was the largest and most deadly ever reported in Europe, and many new bird species tested positive for HPAI...

Descripción completa

Detalles Bibliográficos
Autores principales: Caliendo, Valentina, Leijten, Lonneke, van de Bildt, Marco, Germeraad, Evelien, Fouchier, Ron A. M., Beerens, Nancy, Kuiken, Thijs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880460/
https://www.ncbi.nlm.nih.gov/pubmed/35215873
http://dx.doi.org/10.3390/v14020280
Descripción
Sumario:Highly pathogenic avian influenza (HPAI) outbreaks have become increasingly frequent in wild bird populations and have caused mass mortality in many wild bird species. The 2020/2021 epizootic was the largest and most deadly ever reported in Europe, and many new bird species tested positive for HPAI virus for the first time. This study investigated the tropism of HPAI virus in wild birds. We tested the pattern of virus attachment of 2020 H5N8 virus to intestinal and respiratory tissues of key bird species; and characterized pathology of naturally infected Eurasian wigeons (Mareca penelope) and barnacle geese (Branta leucopsis). This study determined that 2020 H5N8 virus had a high level of attachment to the intestinal epithelium (enterotropism) of dabbling ducks and geese and retained attachment to airway epithelium (respirotropism). Natural HPAI 2020 H5 virus infection in Eurasian wigeons and barnacle geese also showed a high level of neurotropism, as both species presented with brain lesions that co-localized with virus antigen expression. We concluded that the combination of respirotropism, neurotropism, and possibly enterotropism, contributed to the successful adaptation of 2020/2021 HPAI H5 viruses to wild waterbird populations.