Cargando…

Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers

Picosecond or nanosecond-domain non-ablative lasers generate faster photothermal effects and cause less injury than microsecond lasers. In this study, we investigated the enhancing effect of 1064 nm picosecond- and nanosecond-domain neodymium (Nd):yttrium–aluminum–garnet (YAG) lasers on the cutaneou...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Woan-Ruoh, Hsiao, Chien-Yu, Chang, Zi-Yu, Wang, Pei-Wen, Aljuffali, Ibrahim A., Lin, Jie-Yu, Fang, Jia-You
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880571/
https://www.ncbi.nlm.nih.gov/pubmed/35214181
http://dx.doi.org/10.3390/pharmaceutics14020450
_version_ 1784659246042841088
author Lee, Woan-Ruoh
Hsiao, Chien-Yu
Chang, Zi-Yu
Wang, Pei-Wen
Aljuffali, Ibrahim A.
Lin, Jie-Yu
Fang, Jia-You
author_facet Lee, Woan-Ruoh
Hsiao, Chien-Yu
Chang, Zi-Yu
Wang, Pei-Wen
Aljuffali, Ibrahim A.
Lin, Jie-Yu
Fang, Jia-You
author_sort Lee, Woan-Ruoh
collection PubMed
description Picosecond or nanosecond-domain non-ablative lasers generate faster photothermal effects and cause less injury than microsecond lasers. In this study, we investigated the enhancing effect of 1064 nm picosecond- and nanosecond-domain neodymium (Nd):yttrium–aluminum–garnet (YAG) lasers on the cutaneous delivery of cosmeceutical peptides. Microsecond-domain fractional ablative CO(2) and fully ablative erbium (Er):YAG lasers were also used for comparison. In the Franz diffusion cell study, pig or mouse skin was treated with a laser before exposure to palmitoyl tripeptide (PT)-1, PT-38, and copper tripeptide (CT)-1 at a concentration of 150 μM. Psoriasiform, atopic dermatitis (AD)-like, and photoaged skins were also developed as permeation barriers. The non-ablative laser elicited the ultrastructural disruption of the stratum corneum and epidermal vacuolation. All laser modalities significantly increased the skin permeation of peptides in vitro. The non-ablative laser chiefly enhanced peptide delivery to the receptor compartment, whereas the ablative laser mainly increased the intracutaneous peptide deposition. The picosecond- and nanosecond-domain Nd:YAG lasers elevated the amount of PT-1 in the receptor up to 40- and 22-fold compared with untreated skin, respectively. Laser treatment promoted peptide delivery in barrier-deficient and inflamed skins, although this enhancement effect was less than that observed in healthy skin. Fluorescence microscopy indicated the capability of the non-ablative laser to deliver peptides to deeper skin strata. The ablative laser confined the peptide distribution in the epidermis. Confocal microscopy showed that peptides penetrated the skin along the microdots created by the fractional Nd:YAG and CO(2) lasers. The skin barrier function determined by transepidermal water loss suggested quick recovery when using a nanosecond-domain laser (within 4 h). A longer period was needed for the skin treated with the fully ablative Er:YAG laser (76−84 h). Nanosecond non-ablative laser-facilitated peptide delivery may become an efficient and safe approach for cosmeceutical applications.
format Online
Article
Text
id pubmed-8880571
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88805712022-02-26 Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers Lee, Woan-Ruoh Hsiao, Chien-Yu Chang, Zi-Yu Wang, Pei-Wen Aljuffali, Ibrahim A. Lin, Jie-Yu Fang, Jia-You Pharmaceutics Article Picosecond or nanosecond-domain non-ablative lasers generate faster photothermal effects and cause less injury than microsecond lasers. In this study, we investigated the enhancing effect of 1064 nm picosecond- and nanosecond-domain neodymium (Nd):yttrium–aluminum–garnet (YAG) lasers on the cutaneous delivery of cosmeceutical peptides. Microsecond-domain fractional ablative CO(2) and fully ablative erbium (Er):YAG lasers were also used for comparison. In the Franz diffusion cell study, pig or mouse skin was treated with a laser before exposure to palmitoyl tripeptide (PT)-1, PT-38, and copper tripeptide (CT)-1 at a concentration of 150 μM. Psoriasiform, atopic dermatitis (AD)-like, and photoaged skins were also developed as permeation barriers. The non-ablative laser elicited the ultrastructural disruption of the stratum corneum and epidermal vacuolation. All laser modalities significantly increased the skin permeation of peptides in vitro. The non-ablative laser chiefly enhanced peptide delivery to the receptor compartment, whereas the ablative laser mainly increased the intracutaneous peptide deposition. The picosecond- and nanosecond-domain Nd:YAG lasers elevated the amount of PT-1 in the receptor up to 40- and 22-fold compared with untreated skin, respectively. Laser treatment promoted peptide delivery in barrier-deficient and inflamed skins, although this enhancement effect was less than that observed in healthy skin. Fluorescence microscopy indicated the capability of the non-ablative laser to deliver peptides to deeper skin strata. The ablative laser confined the peptide distribution in the epidermis. Confocal microscopy showed that peptides penetrated the skin along the microdots created by the fractional Nd:YAG and CO(2) lasers. The skin barrier function determined by transepidermal water loss suggested quick recovery when using a nanosecond-domain laser (within 4 h). A longer period was needed for the skin treated with the fully ablative Er:YAG laser (76−84 h). Nanosecond non-ablative laser-facilitated peptide delivery may become an efficient and safe approach for cosmeceutical applications. MDPI 2022-02-19 /pmc/articles/PMC8880571/ /pubmed/35214181 http://dx.doi.org/10.3390/pharmaceutics14020450 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lee, Woan-Ruoh
Hsiao, Chien-Yu
Chang, Zi-Yu
Wang, Pei-Wen
Aljuffali, Ibrahim A.
Lin, Jie-Yu
Fang, Jia-You
Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers
title Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers
title_full Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers
title_fullStr Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers
title_full_unstemmed Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers
title_short Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers
title_sort cutaneous delivery of cosmeceutical peptides enhanced by picosecond- and nanosecond-domain nd:yag lasers with quick recovery of the skin barrier function: comparison with microsecond-domain ablative lasers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880571/
https://www.ncbi.nlm.nih.gov/pubmed/35214181
http://dx.doi.org/10.3390/pharmaceutics14020450
work_keys_str_mv AT leewoanruoh cutaneousdeliveryofcosmeceuticalpeptidesenhancedbypicosecondandnanoseconddomainndyaglaserswithquickrecoveryoftheskinbarrierfunctioncomparisonwithmicroseconddomainablativelasers
AT hsiaochienyu cutaneousdeliveryofcosmeceuticalpeptidesenhancedbypicosecondandnanoseconddomainndyaglaserswithquickrecoveryoftheskinbarrierfunctioncomparisonwithmicroseconddomainablativelasers
AT changziyu cutaneousdeliveryofcosmeceuticalpeptidesenhancedbypicosecondandnanoseconddomainndyaglaserswithquickrecoveryoftheskinbarrierfunctioncomparisonwithmicroseconddomainablativelasers
AT wangpeiwen cutaneousdeliveryofcosmeceuticalpeptidesenhancedbypicosecondandnanoseconddomainndyaglaserswithquickrecoveryoftheskinbarrierfunctioncomparisonwithmicroseconddomainablativelasers
AT aljuffaliibrahima cutaneousdeliveryofcosmeceuticalpeptidesenhancedbypicosecondandnanoseconddomainndyaglaserswithquickrecoveryoftheskinbarrierfunctioncomparisonwithmicroseconddomainablativelasers
AT linjieyu cutaneousdeliveryofcosmeceuticalpeptidesenhancedbypicosecondandnanoseconddomainndyaglaserswithquickrecoveryoftheskinbarrierfunctioncomparisonwithmicroseconddomainablativelasers
AT fangjiayou cutaneousdeliveryofcosmeceuticalpeptidesenhancedbypicosecondandnanoseconddomainndyaglaserswithquickrecoveryoftheskinbarrierfunctioncomparisonwithmicroseconddomainablativelasers