Cargando…
Automated License Plate Recognition for Resource-Constrained Environments
The incorporation of deep-learning techniques in embedded systems has enhanced the capabilities of edge computing to a great extent. However, most of these solutions rely on high-end hardware and often require a high processing capacity, which cannot be achieved with resource-constrained edge comput...
Autores principales: | Padmasiri, Heshan, Shashirangana, Jithmi, Meedeniya, Dulani, Rana, Omer, Perera, Charith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880701/ https://www.ncbi.nlm.nih.gov/pubmed/35214336 http://dx.doi.org/10.3390/s22041434 |
Ejemplares similares
-
Forest Sound Classification Dataset: FSC22
por: Bandara, Meelan, et al.
Publicado: (2023) -
An End-to-End Automated License Plate Recognition System Using YOLO Based Vehicle and License Plate Detection with Vehicle Classification
por: Al-batat, Reda, et al.
Publicado: (2022) -
License Plate Recognition Algorithm for Passenger Cars in Chinese Residential Areas
por: Jin, Lisheng, et al.
Publicado: (2012) -
Full depth CNN classifier for handwritten and license plate characters recognition
por: Salemdeeb, Mohammed, et al.
Publicado: (2021) -
Robust Korean License Plate Recognition Based on Deep Neural Networks
por: Wang, Hanxiang, et al.
Publicado: (2021)