Cargando…
A Multi-Agent Deep Reinforcement Learning Approach for Enhancement of COVID-19 CT Image Segmentation
Currently, most mask extraction techniques are based on convolutional neural networks (CNNs). However, there are still numerous problems that mask extraction techniques need to solve. Thus, the most advanced methods to deploy artificial intelligence (AI) techniques are necessary. The use of cooperat...
Autores principales: | Allioui, Hanane, Mohammed, Mazin Abed, Benameur, Narjes, Al-Khateeb, Belal, Abdulkareem, Karrar Hameed, Garcia-Zapirain, Begonya, Damaševičius, Robertas, Maskeliūnas, Rytis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880720/ https://www.ncbi.nlm.nih.gov/pubmed/35207796 http://dx.doi.org/10.3390/jpm12020309 |
Ejemplares similares
-
Novel Crow Swarm Optimization Algorithm and Selection Approach for Optimal Deep Learning COVID-19 Diagnostic Model
por: Mohammed, Mazin Abed, et al.
Publicado: (2022) -
Rise of Deep Learning Clinical Applications and Challenges in Omics Data: A Systematic Review
por: Mohammed, Mazin Abed, et al.
Publicado: (2023) -
Computer-Aided Depth Video Stream Masking Framework for Human Body Segmentation in Depth Sensor Images
por: Ryselis, Karolis, et al.
Publicado: (2022) -
Agrast-6: Abridged VGG-Based Reflected Lightweight Architecture for Binary Segmentation of Depth Images Captured by Kinect
por: Ryselis, Karolis, et al.
Publicado: (2022) -
Multi-Agent Systems in Fog–Cloud Computing for Critical Healthcare Task Management Model (CHTM) Used for ECG Monitoring
por: Mutlag, Ammar Awad, et al.
Publicado: (2021)