Cargando…
Patient contrastive learning: A performant, expressive, and practical approach to electrocardiogram modeling
Supervised machine learning applications in health care are often limited due to a scarcity of labeled training data. To mitigate the effect of small sample size, we introduce a pre-training approach, Patient Contrastive Learning of Representations (PCLR), which creates latent representations of ele...
Autores principales: | Diamant, Nathaniel, Reinertsen, Erik, Song, Steven, Aguirre, Aaron D., Stultz, Collin M., Batra, Puneet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880931/ https://www.ncbi.nlm.nih.gov/pubmed/35157695 http://dx.doi.org/10.1371/journal.pcbi.1009862 |
Ejemplares similares
-
Deep learning on resting electrocardiogram to identify impaired heart rate recovery
por: Diamant, Nathaniel, et al.
Publicado: (2022) -
Machine Learning Improves Risk Stratification After Acute Coronary Syndrome
por: Myers, Paul D., et al.
Publicado: (2017) -
Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
por: Khurshid, Shaan, et al.
Publicado: (2021) -
New approach for T-wave end detection on electrocardiogram: Performance in noisy conditions
por: Vázquez-Seisdedos, Carlos R, et al.
Publicado: (2011) -
An Ensemble Learning Approach for Electrocardiogram Sensor Based Human Emotion Recognition
por: Dissanayake, Theekshana, et al.
Publicado: (2019)