Cargando…
LDIAED: A lightweight deep learning algorithm implementable on automated external defibrillators
Differentiating between shockable and non-shockable Electrocardiogram (ECG) signals would increase the success of resuscitation by the Automated External Defibrillators (AED). In this study, a Deep Neural Network (DNN) algorithm is used to distinguish 1.4-second segment shockable signals from non-sh...
Autores principales: | Nasimi, Fahimeh, Yazdchi, Mohammadreza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880955/ https://www.ncbi.nlm.nih.gov/pubmed/35213628 http://dx.doi.org/10.1371/journal.pone.0264405 |
Ejemplares similares
-
An Emotion Recognition Embedded System using a Lightweight Deep Learning Model
por: Bazargani, Mehdi, et al.
Publicado: (2023) -
Deep Feature Learning for Sudden Cardiac Arrest Detection in Automated External Defibrillators
por: Nguyen, Minh Tuan, et al.
Publicado: (2018) -
Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators
por: Amann, Anton, et al.
Publicado: (2005) -
The Role of Automated External Defibrillators in Athletics
por: Rothmier, Justin D., et al.
Publicado: (2009) -
Public health surveillance of automated external defibrillators in the USA: protocol for the dynamic automated external defibrillator registry study
por: Elrod, JoAnn Broeckel, et al.
Publicado: (2017)