Cargando…
Deep learning in macroscopic diffuse optical imaging
SIGNIFICANCE: Biomedical optics system design, image formation, and image analysis have primarily been guided by classical physical modeling and signal processing methodologies. Recently, however, deep learning (DL) has become a major paradigm in computational modeling and has demonstrated utility i...
Autores principales: | Smith, Jason T., Ochoa, Marien, Faulkner, Denzel, Haskins, Grant, Intes, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881080/ https://www.ncbi.nlm.nih.gov/pubmed/35218169 http://dx.doi.org/10.1117/1.JBO.27.2.020901 |
Ejemplares similares
-
Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications
por: Nizam, Navid Ibtehaj, et al.
Publicado: (2022) -
Review of structured light in diffuse optical imaging
por: Angelo, Joseph P., et al.
Publicado: (2018) -
Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing – a deep learning approach
por: Yao, Ruoyang, et al.
Publicado: (2019) -
Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor
por: Rudkouskaya, Alena, et al.
Publicado: (2020) -
High-numerical-aperture macroscope optics for time-resolved experiments
por: Bührer, Minna, et al.
Publicado: (2019)