Cargando…

Aquatic macroinvertebrate assemblages in rivers influenced by mining activities

Mining is one of the major pollution sources worldwide, causing huge disturbances to the environment. Industrial and artisanal mining activities are widespread in Mexico, a major global producer of various metals. This study aimed to assess the ecological impairments resulting from mining activities...

Descripción completa

Detalles Bibliográficos
Autores principales: Rico-Sánchez, Axel Eduardo, Rodríguez-Romero, Alexis Joseph, Sedeño-Díaz, Jacinto Elías, López-López, Eugenia, Sundermann, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881590/
https://www.ncbi.nlm.nih.gov/pubmed/35217691
http://dx.doi.org/10.1038/s41598-022-06869-2
Descripción
Sumario:Mining is one of the major pollution sources worldwide, causing huge disturbances to the environment. Industrial and artisanal mining activities are widespread in Mexico, a major global producer of various metals. This study aimed to assess the ecological impairments resulting from mining activities using aquatic macroinvertebrates assemblages (MA). A multiple co-inertia analysis was applied to determine the relationships between environmental factors, habitat quality, heavy metals, and aquatic macroinvertebrates in 15 study sites in two different seasons (dry and wet) along two rivers running across the Central Plateau of Mexico. The results revealed three contrasting environmental conditions associated with different MAs. High concentrations of heavy metals, nutrients, and salinity limit the presence of several families of seemingly sensitive macroinvertebrates. These factors were found to influence structural changes in MAs, showing that not only mining activities, but also agriculture and presence of villages in the basin, exert adverse effects on macroinvertebrate assemblages. Diversity indices showed that the lowest diversity matched both the most polluted and the most saline rivers. The rivers studied displayed high alkalinity and hardness levels, which can reduce the availability of metals and cause adverse effects on periphyton by inhibiting photosynthesis and damaging MAs. Aquatic biomonitoring in rivers, impacted by mining and other human activities, is critical for detecting the effect of metals and other pollutants to improve management and conservation strategies. This study supports the design of cost-effective and accurate water quality biomonitoring protocols in developing countries.