Cargando…
Winter wheat yield prediction using convolutional neural networks from environmental and phenological data
Crop yield forecasting depends on many interactive factors, including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using an extensive dataset of weather, soil, and crop phen...
Autores principales: | Srivastava, Amit Kumar, Safaei, Nima, Khaki, Saeed, Lopez, Gina, Zeng, Wenzhi, Ewert, Frank, Gaiser, Thomas, Rahimi, Jaber |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881605/ https://www.ncbi.nlm.nih.gov/pubmed/35217689 http://dx.doi.org/10.1038/s41598-022-06249-w |
Ejemplares similares
-
Allelic Variations in Phenology Genes of Eastern U.S. Soft Winter and Korean Winter Wheat and Their Associations with Heading Date
por: Ma, Fengyun, et al.
Publicado: (2022) -
High-throughput image-based plant stand count estimation using convolutional neural networks
por: Khaki, Saeed, et al.
Publicado: (2022) -
Phenology and Dispersal of the Wheat Stem Sawfly (Hymenoptera: Cephidae) Into Winter Wheat Fields in Nebraska
por: McCullough, Chris T, et al.
Publicado: (2020) -
Spring phenology of cotton bollworm affects wheat yield
por: Huang, Jian, et al.
Publicado: (2017) -
Genomic prediction for grain yield and micro-environmental sensitivity in winter wheat
por: Raffo, Miguel A., et al.
Publicado: (2023)