Cargando…
Machine learning prediction of 3CL(pro) SARS-CoV-2 docking scores
Molecular docking results of two training sets containing 866 and 8,696 compounds were used to train three different machine learning (ML) approaches. Neural network approaches according to Keras and TensorFlow libraries and the gradient boosted decision trees approach of XGBoost were used with DScr...
Autores principales: | Bucinsky, Lukas, Bortňák, Dušan, Gall, Marián, Matúška, Ján, Milata, Viktor, Pitoňák, Michal, Štekláč, Marek, Végh, Daniel, Zajaček, Dávid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881816/ https://www.ncbi.nlm.nih.gov/pubmed/35288359 http://dx.doi.org/10.1016/j.compbiolchem.2022.107656 |
Ejemplares similares
-
3CL(pro) and PL(pro) affinity, a docking study to fight COVID19 based on 900 compounds from PubChem and literature. Are there new drugs to be found?
por: Štekláč, Marek, et al.
Publicado: (2021) -
Molecular docking and machine learning affinity prediction of compounds identified upon softwood bark extraction to the main protease of the SARS-CoV-2 virus
por: Jablonský, Michal, et al.
Publicado: (2022) -
Electronic structure of two isostructural ‘paddle-wheel’ complexes: a comparative study
por: Herich, Peter, et al.
Publicado: (2018) -
QSAR and molecular docking studies of isatin and indole derivatives as SARS 3CL(pro) inhibitors
por: Soleymani, Niousha, et al.
Publicado: (2023) -
New syntheses of 5,6- and 7,8-diaminoquinolines
por: Bella, Maroš, et al.
Publicado: (2013)