Cargando…
Deep-learning model for predicting the survival of rectal adenocarcinoma patients based on a surveillance, epidemiology, and end results analysis
BACKGROUND: We collected information on patients with rectal adenocarcinoma in the United States from the Surveillance, Epidemiology, and EndResults (SEER) database. We used this information to establish a model that combined deep learning with a multilayer neural network (the DeepSurv model) for pr...
Autores principales: | Yu, Haohui, Huang, Tao, Feng, Bin, Lyu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881858/ https://www.ncbi.nlm.nih.gov/pubmed/35216571 http://dx.doi.org/10.1186/s12885-022-09217-9 |
Ejemplares similares
-
Risk factors associated with suicide among leukemia patients: A Surveillance, Epidemiology, and End Results analysis
por: Yu, Haohui, et al.
Publicado: (2020) -
Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis
por: Yan, Lizhao, et al.
Publicado: (2022) -
Effect of marital status on duodenal adenocarcinoma survival: A Surveillance Epidemiology and End Results population analysis
por: Wang, Na, et al.
Publicado: (2019) -
Analysis of suicide risk in adult US patients with squamous cell carcinoma: a retrospective study based on the Surveillance, Epidemiology and End Results database
por: Yu, Haohui, et al.
Publicado: (2022) -
Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database
por: Jiang, Chen, et al.
Publicado: (2023)