Cargando…

Phylogenomic and comparative analyses of Coffeeae alliance (Rubiaceae): deep insights into phylogenetic relationships and plastome evolution

BACKGROUND: The large and diverse Coffeeae alliance clade of subfamily Ixoroideae (Rubiaceae) consists of 10 tribes, > 90 genera, and > 2000 species. Previous molecular phylogenetics using limited numbers of markers were often unable to fully resolve the phylogenetic relationships at tribal an...

Descripción completa

Detalles Bibliográficos
Autores principales: Amenu, Sara Getachew, Wei, Neng, Wu, Lei, Oyebanji, Oyetola, Hu, Guangwan, Zhou, Yadong, Wang, Qingfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881883/
https://www.ncbi.nlm.nih.gov/pubmed/35219317
http://dx.doi.org/10.1186/s12870-022-03480-5
Descripción
Sumario:BACKGROUND: The large and diverse Coffeeae alliance clade of subfamily Ixoroideae (Rubiaceae) consists of 10 tribes, > 90 genera, and > 2000 species. Previous molecular phylogenetics using limited numbers of markers were often unable to fully resolve the phylogenetic relationships at tribal and generic levels. Also, the structural variations of plastomes (PSVs) within the Coffeeae alliance tribes have been poorly investigated in previous studies. To fully understand the phylogenetic relationships and PSVs within the clade, highly reliable and sufficient sampling with superior next-generation analysis techniques is required. In this study, 71 plastomes (40 newly sequenced and assembled and the rest from the GenBank) were comparatively analyzed to decipher the PSVs and resolve the phylogenetic relationships of the Coffeeae alliance using four molecular data matrices. RESULTS: All plastomes are typically quadripartite with the size ranging from 153,055 to 155,908 bp and contained 111 unique genes. The inverted repeat (IR) regions experienced multiple contraction and expansion; five repeat types were detected but the most abundant was SSR. The size of the Coffeeae alliance clade plastomes and its elements are affected by the IR boundary shifts and the repeat types. However, the emerging PSVs had no taxonomic and phylogenetic implications. Eight highly divergent regions were identified within the plastome regions ndhF, ccsA, ndhD, ndhA, ndhH, ycf1, rps16-trnQ-UUG, and psbM-trnD. These highly variable regions may be potential molecular markers for further species delimitation and population genetic analyses for the clade. Our plastome phylogenomic analyses yielded a well-resolved phylogeny tree with well-support at the tribal and generic levels within the Coffeeae alliance. CONCLUSIONS: Plastome data could be indispensable in resolving the phylogenetic relationships of the Coffeeae alliance tribes. Therefore, this study provides deep insights into the PSVs and phylogenetic relationships of the Coffeeae alliance and the Rubiaceae family as a whole. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03480-5.