Cargando…
Evaluating the Association Between Comorbidities and COVID-19 Severity Scoring on Chest CT Examinations Between the Two Waves of COVID-19: An Imaging Study Using Artificial Intelligence
Background Coronavirus disease 2019 (COVID-19) has accounted for over 352 million cases and five million deaths globally. Although it affects populations across all nations, developing or transitional, of all genders and ages, the extent of the specific involvement is not very well known. This study...
Autores principales: | Ajmera, Pranav, Kharat, Amit, Dhirawani, Satvik, Khaladkar, Sanjay M, Kulkarni, Viraj, Duddalwar, Vinay, Lamghare, Purnachandra, Rathi, Snehal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881892/ https://www.ncbi.nlm.nih.gov/pubmed/35233327 http://dx.doi.org/10.7759/cureus.21656 |
Ejemplares similares
-
Observer performance evaluation of the feasibility of a deep learning
model to detect cardiomegaly on chest radiographs
por: Ajmera, Pranav, et al.
Publicado: (2022) -
Arachnoid Cyst in Middle Cranial Fossa With Intraorbital Cyst (Orbital Meningocele)
por: Kulkarni, Vilas M, et al.
Publicado: (2021) -
Susceptibility Weighted Imaging: An Effective Auxiliary Sequence That Enhances Insight Into the Imaging of Stroke
por: Khaladkar, Sanjay M, et al.
Publicado: (2022) -
Validation of a Deep Learning Model for Detecting Chest Pathologies from Digital Chest Radiographs
por: Ajmera, Pranav, et al.
Publicado: (2023) -
Role of Magnetic Resonance Imaging in the Evaluation of Rotator Cuff Tears
por: Koganti, Deepak V, et al.
Publicado: (2022)