Cargando…
Using Machine Learning to Identify Patients at High Risk of Inappropriate Drug Dosing in Periods with Renal Dysfunction
PURPOSE: Dosing of renally cleared drugs in patients with kidney failure often deviates from clinical guidelines, so we sought to elicit predictors of receiving inappropriate doses of renal risk drugs. PATIENTS AND METHODS: We combined data from the Danish National Patient Register and in-hospital d...
Autores principales: | Kaas-Hansen, Benjamin Skov, Leal Rodríguez, Cristina, Placido, Davide, Thorsen-Meyer, Hans-Christian, Nielsen, Anna Pors, Dérian, Nicolas, Brunak, Søren, Andersen, Stig Ejdrup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881932/ https://www.ncbi.nlm.nih.gov/pubmed/35228820 http://dx.doi.org/10.2147/CLEP.S344435 |
Ejemplares similares
-
Machine Learning to Identify Patients at Risk of Inappropriate Dosing for Renal Risk Medications: A Critical Comment on Kaas-Hansen et al [Response to Letter]
por: Kaas-Hansen, Benjamin Skov, et al.
Publicado: (2022) -
Language‐agnostic pharmacovigilant text mining to elicit side effects from clinical notes and hospital medication records
por: Kaas‐Hansen, Benjamin Skov, et al.
Publicado: (2022) -
Development of a dynamic prediction model for unplanned ICU admission and mortality in hospitalized patients
por: Placido, Davide, et al.
Publicado: (2023) -
Drug interactions in hospital prescriptions in Denmark: Prevalence and associations with adverse outcomes
por: Leal Rodríguez, Cristina, et al.
Publicado: (2022) -
Is the CYP2D6 Genotype Associated with Antipsychotic-Induced Weight Gain? †
por: Jürgens, Gesche, et al.
Publicado: (2022)