Cargando…
Can Robots Do Epidemiology? Machine Learning, Causal Inference, and Predicting the Outcomes of Public Health Interventions
This paper argues that machine learning (ML) and epidemiology are on collision course over causation. The discipline of epidemiology lays great emphasis on causation, while ML research does not. Some epidemiologists have proposed imposing what amounts to a causal constraint on ML in epidemiology, re...
Autores principales: | Broadbent, Alex, Grote, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881939/ https://www.ncbi.nlm.nih.gov/pubmed/35251906 http://dx.doi.org/10.1007/s13347-022-00509-3 |
Ejemplares similares
-
Causality and causal inference in epidemiology: the need for a pluralistic approach
por: Vandenbroucke, Jan P, et al.
Publicado: (2016) -
Machine Learning in Causal Inference: Application in Pharmacovigilance
por: Zhao, Yiqing, et al.
Publicado: (2022) -
Correction to: Machine Learning in Causal Inference: Application in Pharmacovigilance
por: Zhao, Yiqing, et al.
Publicado: (2022) -
Causal inference in environmental epidemiology
por: Bae, Sanghyuk, et al.
Publicado: (2017) -
Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2021)