Cargando…
Sequential coupling of dry and wet COVID-19 screening to reduce the number of quarantined individuals
INTRODUCTION: Currently, several countries are facing severe public health and policy challenges when designing their COVID-19 screening strategy. A quantitative analysis of the potential impact that combing the Rapid Antigen Test (RAT; Wet screening) and digital checker (Dry screening) can have on...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8882032/ https://www.ncbi.nlm.nih.gov/pubmed/35272147 http://dx.doi.org/10.1016/j.cmpb.2022.106715 |
Sumario: | INTRODUCTION: Currently, several countries are facing severe public health and policy challenges when designing their COVID-19 screening strategy. A quantitative analysis of the potential impact that combing the Rapid Antigen Test (RAT; Wet screening) and digital checker (Dry screening) can have on the healthcare system is lacking. METHOD: We created a hypothetical COVID-19 cohort for the analysis. The population size was set as 10 million with three levels of disease prevalence (10%, 1%, or 0.1%) under the assumption that a positive test result will lead to quarantine. A digital checker and two RATs are used for analysis. We further hypothesized two scenarios: RAT only and RAT plus digital checker. We then calculated the number of quarantined in both scenarios and compared the two to understand the benefits of sequential coupling of a digital checker with a RAT. RESULT: Sequential coupling of the digital checker and RAT can significantly reduce the number of individuals quarantined to 0.95-1.33M, 0.86-1.29M, and 0.86-1.29M, respectively, under the three different prevalence levels. CONCLUSION: Sequential coupling of digital checker and RAT at a population level for COVID-19 positive test to reduce the number of people who require quarantine and alleviating stress on the overburdened healthcare systems during the COVID-19 pandemic. |
---|