Cargando…
Virus MIP-composites for SARS-CoV-2 detection in the aquatic environment
SARS-CoV-2 is the virus responsible for causing the global COVID-19 pandemic. Identifying the presence of this virus in the environment could potentially improve the effectiveness of disease control measures. Environmental SARS-CoV-2 monitoring may become increasingly demanded in areas where the ava...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8882038/ https://www.ncbi.nlm.nih.gov/pubmed/35250128 http://dx.doi.org/10.1016/j.matlet.2022.131973 |
Sumario: | SARS-CoV-2 is the virus responsible for causing the global COVID-19 pandemic. Identifying the presence of this virus in the environment could potentially improve the effectiveness of disease control measures. Environmental SARS-CoV-2 monitoring may become increasingly demanded in areas where the available testing methods are ineffective. In this study, we present an electrochemical polymer composites biosensor for measuring SARS-CoV-2 whole-virus particles in the environment. The sensitized layer was prepared from molecularly imprinted polymer (MIP) composites of inactivated SARS-CoV-2. Testing demonstrated increased sensor signaling with SARS-CoV-2 specifically, while lower responses were observed to the negative controls, H5N1 influenza A virus and non-imprinted polymers (NIPs). This sensor detected SARS-CoV-2 at concentrations as low as 0.1 fM in buffer and samples prepared from reservoir water with a 3 log-scale linearity. |
---|