Cargando…
Comparative analysis of explainable machine learning prediction models for hospital mortality
BACKGROUND: Machine learning (ML) holds the promise of becoming an essential tool for utilising the increasing amount of clinical data available for analysis and clinical decision support. However, the lack of trust in the models has limited the acceptance of this technology in healthcare. This mist...
Autores principales: | Stenwig, Eline, Salvi, Giampiero, Rossi, Pierluigi Salvo, Skjærvold, Nils Kristian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8882271/ https://www.ncbi.nlm.nih.gov/pubmed/35220950 http://dx.doi.org/10.1186/s12874-022-01540-w |
Ejemplares similares
-
Comparison of correctly and incorrectly classified patients for in-hospital mortality prediction in the intensive care unit
por: Stenwig, Eline, et al.
Publicado: (2023) -
Explainable Machine-Learning Model for Prediction of In-Hospital Mortality in Septic Patients Requiring Intensive Care Unit Readmission
por: Hu, Chang, et al.
Publicado: (2022) -
A pig model of acute right ventricular afterload increase by hypoxic pulmonary vasoconstriction
por: Knai, Kathrine, et al.
Publicado: (2017) -
Explainable Machine Learning-Based Risk Prediction Model for In-Hospital Mortality after Continuous Renal Replacement Therapy Initiation
por: Hung, Pei-Shan, et al.
Publicado: (2022) -
The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
por: Soliman, Amira, et al.
Publicado: (2023)