Cargando…
A multi-sequences MRI deep framework study applied to glioma classfication
Glioma is one of the most important central nervous system tumors, ranked 15th in the most common cancer for men and women. Magnetic Resonance Imaging (MRI) represents a common tool for medical experts to the diagnosis of glioma. A set of multi-sequences from an MRI is selected according to the seve...
Autores principales: | Coupet, Matthieu, Urruty, Thierry, Leelanupab, Teerapong, Naudin, Mathieu, Bourdon, Pascal, Maloigne, Christine Fernandez, Guillevin, Rémy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8882719/ https://www.ncbi.nlm.nih.gov/pubmed/35250358 http://dx.doi.org/10.1007/s11042-022-12316-1 |
Ejemplares similares
-
Deep learning based neural network application for automatic ultrasonic computed tomographic bone image segmentation
por: Marwa, Fradi, et al.
Publicado: (2022) -
Deep learning to diagnose left ventricular hypertrophy from standard, 12-lead ECG signals: a proof-of-concept study
por: Pantelidis, P, et al.
Publicado: (2023) -
Assessment of the atrial fibrillation burden in Holter ECG recordings using artificial intelligence
por: Hennings, E, et al.
Publicado: (2023) -
A data-driven cluster analysis of stroke phenotypes in Asian patients with atrial fibrillation: refinement of the CHA2DS2-VASc score
por: Hsu, J C, et al.
Publicado: (2023) -
Artificial intelligence-enhanced electrocardiography for predicting severity prognosis in patients with COVID-19
por: Baek, Y, et al.
Publicado: (2023)