Cargando…
Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation
Complex, goal-directed and time-critical movements require the processing of temporal features in sensory information as well as the fine-tuned temporal interplay of several effectors. Temporal estimates used to produce such behavior may thus be obtained through perceptual or motor processes. To dis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883149/ https://www.ncbi.nlm.nih.gov/pubmed/35201280 http://dx.doi.org/10.1167/jov.22.2.18 |
_version_ | 1784659862541565952 |
---|---|
author | Schlichting, Nadine Kartashova, Tatiana Wiesing, Michael Zimmermann, Eckart |
author_facet | Schlichting, Nadine Kartashova, Tatiana Wiesing, Michael Zimmermann, Eckart |
author_sort | Schlichting, Nadine |
collection | PubMed |
description | Complex, goal-directed and time-critical movements require the processing of temporal features in sensory information as well as the fine-tuned temporal interplay of several effectors. Temporal estimates used to produce such behavior may thus be obtained through perceptual or motor processes. To disentangle the two options, we tested whether adaptation to a temporal perturbation in an interval reproduction task transfers to interval reproduction tasks with varying sensory information (visual appearance of targets, modality, and virtual reality [VR] environment or real-world) or varying movement types (continuous arm movements or brief clicking movements). Halfway through the experiments we introduced a temporal perturbation, such that continuous pointing movements were artificially slowed down in VR, causing participants to adapt their behavior to sustain performance. In four experiments, we found that sensorimotor adaptation to temporal perturbations is independent of environment context and movement type, but modality specific. Our findings suggest that motor errors induced by temporal sensorimotor adaptation affect the modality specific perceptual processing of temporal estimates. |
format | Online Article Text |
id | pubmed-8883149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-88831492022-03-01 Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation Schlichting, Nadine Kartashova, Tatiana Wiesing, Michael Zimmermann, Eckart J Vis Article Complex, goal-directed and time-critical movements require the processing of temporal features in sensory information as well as the fine-tuned temporal interplay of several effectors. Temporal estimates used to produce such behavior may thus be obtained through perceptual or motor processes. To disentangle the two options, we tested whether adaptation to a temporal perturbation in an interval reproduction task transfers to interval reproduction tasks with varying sensory information (visual appearance of targets, modality, and virtual reality [VR] environment or real-world) or varying movement types (continuous arm movements or brief clicking movements). Halfway through the experiments we introduced a temporal perturbation, such that continuous pointing movements were artificially slowed down in VR, causing participants to adapt their behavior to sustain performance. In four experiments, we found that sensorimotor adaptation to temporal perturbations is independent of environment context and movement type, but modality specific. Our findings suggest that motor errors induced by temporal sensorimotor adaptation affect the modality specific perceptual processing of temporal estimates. The Association for Research in Vision and Ophthalmology 2022-02-24 /pmc/articles/PMC8883149/ /pubmed/35201280 http://dx.doi.org/10.1167/jov.22.2.18 Text en Copyright 2022 The Authors https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License. |
spellingShingle | Article Schlichting, Nadine Kartashova, Tatiana Wiesing, Michael Zimmermann, Eckart Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation |
title | Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation |
title_full | Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation |
title_fullStr | Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation |
title_full_unstemmed | Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation |
title_short | Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation |
title_sort | temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883149/ https://www.ncbi.nlm.nih.gov/pubmed/35201280 http://dx.doi.org/10.1167/jov.22.2.18 |
work_keys_str_mv | AT schlichtingnadine temporalperturbationscausemovementcontextindependentbutmodalityspecificsensorimotoradaptation AT kartashovatatiana temporalperturbationscausemovementcontextindependentbutmodalityspecificsensorimotoradaptation AT wiesingmichael temporalperturbationscausemovementcontextindependentbutmodalityspecificsensorimotoradaptation AT zimmermanneckart temporalperturbationscausemovementcontextindependentbutmodalityspecificsensorimotoradaptation |