Cargando…
Application of Artificial Intelligence and Deep Learning for Choroid Segmentation in Myopia
PURPOSE: To investigate the correlation between choroidal thickness and myopia progression using a deep learning method. METHODS: Two data sets, data set A and data set B, comprising of 123 optical coherence tomography (OCT) volumes, were collected to establish the model and verify its clinical util...
Autores principales: | Chen, Hung-Ju, Huang, Yu-Len, Tse, Siu-Lun, Hsia, Wei-Ping, Hsiao, Chung-Hao, Wang, Yang, Chang, Chia-Jen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883159/ https://www.ncbi.nlm.nih.gov/pubmed/35212716 http://dx.doi.org/10.1167/tvst.11.2.38 |
Ejemplares similares
-
Artificial intelligence and digital solutions for myopia
por: Li, Yong, et al.
Publicado: (2023) -
Deep-learning algorithms for choroidal thickness measurements in high myopia
por: Bartol-Puyal, Francisco de Asís, et al.
Publicado: (2022) -
Applications of Artificial Intelligence in Myopia: Current and Future Directions
por: Zhang, Chenchen, et al.
Publicado: (2022) -
Artificial intelligence technology for myopia challenges: A review
por: Zhang, Juzhao, et al.
Publicado: (2023) -
Choroidal Thickness and Biometric Markers for the Screening of Lacquer Cracks in Patients with High Myopia
por: Wang, Nan-Kai, et al.
Publicado: (2013)