Cargando…
Exploratory State Representation Learning
Not having access to compact and meaningful representations is known to significantly increase the complexity of reinforcement learning (RL). For this reason, it can be useful to perform state representation learning (SRL) before tackling RL tasks. However, obtaining a good state representation can...
Autores principales: | Merckling, Astrid, Perrin-Gilbert, Nicolas, Coninx, Alex, Doncieux, Stéphane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883277/ https://www.ncbi.nlm.nih.gov/pubmed/35237669 http://dx.doi.org/10.3389/frobt.2022.762051 |
Ejemplares similares
-
Editorial: Evolvability, Environments, Embodiment & Emergence in Robotics
por: Long, John H., et al.
Publicado: (2018) -
Symbolic Representation and Learning With Hyperdimensional Computing
por: Mitrokhin, Anton, et al.
Publicado: (2020) -
Editorial: Language Representation and Learning in Cognitive and Artificial Intelligence Systems
por: Esposito, Massimo, et al.
Publicado: (2020) -
Skill Learning by Autonomous Robotic Playing Using Active Learning and Exploratory Behavior Composition
por: Hangl, Simon, et al.
Publicado: (2020) -
Multimodal Representation Learning for Place Recognition Using Deep Hebbian Predictive Coding
por: Pearson, Martin J., et al.
Publicado: (2021)