Cargando…

Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in Drosophila embryos

The correct wiring of neuronal circuits is one of the most complex processes in development, since axons form highly specific connections out of a vast number of possibilities. Circuit structure is genetically determined in vertebrates and invertebrates, but the mechanisms guiding each axon to preci...

Descripción completa

Detalles Bibliográficos
Autores principales: Velten, Jessica, Gao, Xuefan, Van Nierop y Sanchez, Patrick, Domsch, Katrin, Agarwal, Rashi, Bognar, Lena, Paulsen, Malte, Velten, Lars, Lohmann, Ingrid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883443/
https://www.ncbi.nlm.nih.gov/pubmed/35225419
http://dx.doi.org/10.15252/msb.202110255
_version_ 1784659927820664832
author Velten, Jessica
Gao, Xuefan
Van Nierop y Sanchez, Patrick
Domsch, Katrin
Agarwal, Rashi
Bognar, Lena
Paulsen, Malte
Velten, Lars
Lohmann, Ingrid
author_facet Velten, Jessica
Gao, Xuefan
Van Nierop y Sanchez, Patrick
Domsch, Katrin
Agarwal, Rashi
Bognar, Lena
Paulsen, Malte
Velten, Lars
Lohmann, Ingrid
author_sort Velten, Jessica
collection PubMed
description The correct wiring of neuronal circuits is one of the most complex processes in development, since axons form highly specific connections out of a vast number of possibilities. Circuit structure is genetically determined in vertebrates and invertebrates, but the mechanisms guiding each axon to precisely innervate a unique pre‐specified target cell are poorly understood. We investigated Drosophila embryonic motoneurons using single‐cell genomics, imaging, and genetics. We show that a cell‐specific combination of homeodomain transcription factors and downstream immunoglobulin domain proteins is expressed in individual cells and plays an important role in determining cell‐specific connections between differentiated motoneurons and target muscles. We provide genetic evidence for a functional role of five homeodomain transcription factors and four immunoglobulins in the neuromuscular wiring. Knockdown and ectopic expression of these homeodomain transcription factors induces cell‐specific synaptic wiring defects that are partly phenocopied by genetic modulations of their immunoglobulin targets. Taken together, our data suggest that homeodomain transcription factor and immunoglobulin molecule expression could be directly linked and function as a crucial determinant of neuronal circuit structure.
format Online
Article
Text
id pubmed-8883443
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-88834432022-03-04 Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in Drosophila embryos Velten, Jessica Gao, Xuefan Van Nierop y Sanchez, Patrick Domsch, Katrin Agarwal, Rashi Bognar, Lena Paulsen, Malte Velten, Lars Lohmann, Ingrid Mol Syst Biol Articles The correct wiring of neuronal circuits is one of the most complex processes in development, since axons form highly specific connections out of a vast number of possibilities. Circuit structure is genetically determined in vertebrates and invertebrates, but the mechanisms guiding each axon to precisely innervate a unique pre‐specified target cell are poorly understood. We investigated Drosophila embryonic motoneurons using single‐cell genomics, imaging, and genetics. We show that a cell‐specific combination of homeodomain transcription factors and downstream immunoglobulin domain proteins is expressed in individual cells and plays an important role in determining cell‐specific connections between differentiated motoneurons and target muscles. We provide genetic evidence for a functional role of five homeodomain transcription factors and four immunoglobulins in the neuromuscular wiring. Knockdown and ectopic expression of these homeodomain transcription factors induces cell‐specific synaptic wiring defects that are partly phenocopied by genetic modulations of their immunoglobulin targets. Taken together, our data suggest that homeodomain transcription factor and immunoglobulin molecule expression could be directly linked and function as a crucial determinant of neuronal circuit structure. John Wiley and Sons Inc. 2022-02-28 /pmc/articles/PMC8883443/ /pubmed/35225419 http://dx.doi.org/10.15252/msb.202110255 Text en ©2022 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Velten, Jessica
Gao, Xuefan
Van Nierop y Sanchez, Patrick
Domsch, Katrin
Agarwal, Rashi
Bognar, Lena
Paulsen, Malte
Velten, Lars
Lohmann, Ingrid
Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in Drosophila embryos
title Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in Drosophila embryos
title_full Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in Drosophila embryos
title_fullStr Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in Drosophila embryos
title_full_unstemmed Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in Drosophila embryos
title_short Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in Drosophila embryos
title_sort single‐cell rna sequencing of motoneurons identifies regulators of synaptic wiring in drosophila embryos
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883443/
https://www.ncbi.nlm.nih.gov/pubmed/35225419
http://dx.doi.org/10.15252/msb.202110255
work_keys_str_mv AT veltenjessica singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos
AT gaoxuefan singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos
AT vannieropysanchezpatrick singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos
AT domschkatrin singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos
AT agarwalrashi singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos
AT bognarlena singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos
AT paulsenmalte singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos
AT veltenlars singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos
AT lohmanningrid singlecellrnasequencingofmotoneuronsidentifiesregulatorsofsynapticwiringindrosophilaembryos