Cargando…

Adverse effects of delayed antimicrobial treatment and surgical source control in adults with sepsis: results of a planned secondary analysis of a cluster-randomized controlled trial

BACKGROUND: Timely antimicrobial treatment and source control are strongly recommended by sepsis guidelines, however, their impact on clinical outcomes is uncertain. METHODS: We performed a planned secondary analysis of a cluster-randomized trial conducted from July 2011 to May 2015 including forty...

Descripción completa

Detalles Bibliográficos
Autores principales: Rüddel, Hendrik, Thomas-Rüddel, Daniel O., Reinhart, Konrad, Bach, Friedhelm, Gerlach, Herwig, Lindner, Matthias, Marshall, John C., Simon, Philipp, Weiss, Manfred, Bloos, Frank, Schwarzkopf, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883454/
https://www.ncbi.nlm.nih.gov/pubmed/35227308
http://dx.doi.org/10.1186/s13054-022-03901-9
Descripción
Sumario:BACKGROUND: Timely antimicrobial treatment and source control are strongly recommended by sepsis guidelines, however, their impact on clinical outcomes is uncertain. METHODS: We performed a planned secondary analysis of a cluster-randomized trial conducted from July 2011 to May 2015 including forty German hospitals. All adult patients with sepsis treated in the participating ICUs were included. Primary exposures were timing of antimicrobial therapy and delay of surgical source control during the first 48 h after sepsis onset. Primary endpoint was 28-day mortality. Mixed models were used to investigate the effects of timing while adjusting for confounders. The linearity of the effect was investigated by fractional polynomials and by categorizing of timing. RESULTS: Analyses were based on 4792 patients receiving antimicrobial treatment and 1595 patients undergoing surgical source control. Fractional polynomial analysis identified a linear effect of timing of antimicrobials on 28-day mortality, which increased by 0.42% per hour delay (OR with 95% CI 1.019 [1.01, 1.028], p ≤ 0.001). This effect was significant in patients with and without shock (OR = 1.018 [1.008, 1.029] and 1.026 [1.01, 1.043], respectively). Using a categorized timing variable, there were no significant differences comparing treatment within 1 h versus 1–3 h, or 1 h versus 3–6 h. Delays of more than 6 h significantly increased mortality (OR = 1.41 [1.17, 1.69]). Delay in antimicrobials also increased risk of progression from severe sepsis to septic shock (OR per hour: 1.051 [1.022, 1.081], p ≤ 0.001). Time to surgical source control was significantly associated with decreased odds of successful source control (OR = 0.982 [0.971, 0.994], p = 0.003) and increased odds of death (OR = 1.011 [1.001, 1.021]; p = 0.03) in unadjusted analysis, but not when adjusted for confounders (OR = 0.991 [0.978, 1.005] and OR = 1.008 [0.997, 1.02], respectively). Only, among patients with septic shock delay of source control was significantly related to risk-of death (adjusted OR = 1.013 [1.001, 1.026], p = 0.04). CONCLUSIONS: Our findings suggest that management of sepsis is time critical both for antimicrobial therapy and source control. Also patients, who are not yet in septic shock, profit from early anti-infective treatment since it can prevent further deterioration. Trial registration ClinicalTrials.gov (NCT01187134). Registered 23 August 2010, NCT01187134 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-022-03901-9.