Cargando…
Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hyp...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883496/ https://www.ncbi.nlm.nih.gov/pubmed/35147166 http://dx.doi.org/10.1042/BCJ20210615 |
_version_ | 1784659940771627008 |
---|---|
author | Clerk, Angela Meijles, Daniel N. Hardyman, Michelle A. Fuller, Stephen J. Chothani, Sonia P. Cull, Joshua J. Cooper, Susanna T.E. Alharbi, Hajed O. Vanezis, Konstantinos Felkin, Leanne E. Markou, Thomais Leonard, Samuel J. Shaw, Spencer W. Rackham, Owen J.L. Cook, Stuart A. Glennon, Peter E. Sheppard, Mary N. Sembrat, John C. Rojas, Mauricio McTiernan, Charles F. Barton, Paul J. Sugden, Peter H. |
author_facet | Clerk, Angela Meijles, Daniel N. Hardyman, Michelle A. Fuller, Stephen J. Chothani, Sonia P. Cull, Joshua J. Cooper, Susanna T.E. Alharbi, Hajed O. Vanezis, Konstantinos Felkin, Leanne E. Markou, Thomais Leonard, Samuel J. Shaw, Spencer W. Rackham, Owen J.L. Cook, Stuart A. Glennon, Peter E. Sheppard, Mary N. Sembrat, John C. Rojas, Mauricio McTiernan, Charles F. Barton, Paul J. Sugden, Peter H. |
author_sort | Clerk, Angela |
collection | PubMed |
description | The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the ‘RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAF(V600E) induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a ‘RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the ‘RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function. |
format | Online Article Text |
id | pubmed-8883496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88834962022-03-10 Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo Clerk, Angela Meijles, Daniel N. Hardyman, Michelle A. Fuller, Stephen J. Chothani, Sonia P. Cull, Joshua J. Cooper, Susanna T.E. Alharbi, Hajed O. Vanezis, Konstantinos Felkin, Leanne E. Markou, Thomais Leonard, Samuel J. Shaw, Spencer W. Rackham, Owen J.L. Cook, Stuart A. Glennon, Peter E. Sheppard, Mary N. Sembrat, John C. Rojas, Mauricio McTiernan, Charles F. Barton, Paul J. Sugden, Peter H. Biochem J Cardiovascular System & Vascular Biology The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the ‘RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAF(V600E) induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a ‘RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the ‘RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function. Portland Press Ltd. 2022-02-11 2022-02-11 /pmc/articles/PMC8883496/ /pubmed/35147166 http://dx.doi.org/10.1042/BCJ20210615 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . Open access for this article was enabled by the participation of University of Reading in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with JISC. |
spellingShingle | Cardiovascular System & Vascular Biology Clerk, Angela Meijles, Daniel N. Hardyman, Michelle A. Fuller, Stephen J. Chothani, Sonia P. Cull, Joshua J. Cooper, Susanna T.E. Alharbi, Hajed O. Vanezis, Konstantinos Felkin, Leanne E. Markou, Thomais Leonard, Samuel J. Shaw, Spencer W. Rackham, Owen J.L. Cook, Stuart A. Glennon, Peter E. Sheppard, Mary N. Sembrat, John C. Rojas, Mauricio McTiernan, Charles F. Barton, Paul J. Sugden, Peter H. Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo |
title | Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo |
title_full | Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo |
title_fullStr | Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo |
title_full_unstemmed | Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo |
title_short | Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo |
title_sort | cardiomyocyte braf and type 1 raf inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo |
topic | Cardiovascular System & Vascular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883496/ https://www.ncbi.nlm.nih.gov/pubmed/35147166 http://dx.doi.org/10.1042/BCJ20210615 |
work_keys_str_mv | AT clerkangela cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT meijlesdanieln cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT hardymanmichellea cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT fullerstephenj cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT chothanisoniap cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT culljoshuaj cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT coopersusannate cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT alharbihajedo cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT vaneziskonstantinos cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT felkinleannee cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT markouthomais cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT leonardsamuelj cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT shawspencerw cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT rackhamowenjl cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT cookstuarta cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT glennonpetere cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT sheppardmaryn cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT sembratjohnc cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT rojasmauricio cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT mctiernancharlesf cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT bartonpaulj cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo AT sugdenpeterh cardiomyocytebrafandtype1rafinhibitorspromotecardiomyocyteandcardiachypertrophyinmiceinvivo |