Cargando…
Grayscale medical image segmentation method based on 2D&3D object detection with deep learning
BACKGROUND: Grayscale medical image segmentation is the key step in clinical computer-aided diagnosis. Model-driven and data-driven image segmentation methods are widely used for their less computational complexity and more accurate feature extraction. However, model-driven methods like thresholding...
Autores principales: | Ge, Yunfei, Zhang, Qing, Sun, Yuantao, Shen, Yidong, Wang, Xijiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883636/ https://www.ncbi.nlm.nih.gov/pubmed/35220942 http://dx.doi.org/10.1186/s12880-022-00760-2 |
Ejemplares similares
-
Colorectal Polyp Image Detection and Classification through Grayscale Images and Deep Learning
por: Hsu, Chen-Ming, et al.
Publicado: (2021) -
Colorizing Grayscale CT images of human lungs using deep learning methods
por: Wang, Yuewei, et al.
Publicado: (2022) -
Extending Ripley’s K-Function to Quantify Aggregation in 2-D Grayscale Images
por: Amgad, Mohamed, et al.
Publicado: (2015) -
Deep learning in object recognition, detection, and segmentation
por: Wang, Xiaogang
Publicado: (2016) -
3D Object Detection and Instance Segmentation from 3D Range and 2D Color Images †
por: Shen, Xiaoke, et al.
Publicado: (2021)