Cargando…
Bayesian identification of structural coefficients in causal models and the causal false-positive risk of confounders and colliders in linear Markovian models
BACKGROUND: Causal inference has seen an increasing popularity in medical research. Estimation of causal effects from observational data allows to draw conclusions from data when randomized controlled trials cannot be conducted. Although the identification of structural causal models (SCM) and the c...
Autor principal: | Kelter, Riko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883695/ https://www.ncbi.nlm.nih.gov/pubmed/35220960 http://dx.doi.org/10.1186/s12874-021-01473-w |
Ejemplares similares
-
Reducing the false discovery rate of preclinical animal research with Bayesian statistical decision criteria
por: Kelter, Riko
Publicado: (2023) -
Linear causal modeling with structural equations
por: Mulaik, Stanley A
Publicado: (2009) -
Bayesian alternatives to null hypothesis significance testing in biomedical research: a non-technical introduction to Bayesian inference with JASP
por: Kelter, Riko
Publicado: (2020) -
Causal modelling of heavy-tailed variables and confounders with application to river flow
por: Pasche, Olivier C., et al.
Publicado: (2022) -
Identification of key somatic oncogenic mutation based on a confounder-free causal inference model
por: Liu, Yijun, et al.
Publicado: (2022)