Cargando…

Clinical value of resting cardiac dual-energy CT in patients suspected of coronary artery disease

BACKGROUND: Rest/stress myocardial CT perfusion (CTP) has high diagnostic value for coronary artery disease (CAD), but the additional value of resting CTP especially dual-energy CTP (DE-CTP) beyond coronary CT angiography (CCTA) in chest pain triage remains unclear. We aimed to evaluate the diagnost...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wenhuan, Yu, Fangfang, Liu, Mingxi, Yan, Chengxi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883697/
https://www.ncbi.nlm.nih.gov/pubmed/35220940
http://dx.doi.org/10.1186/s12880-022-00761-1
Descripción
Sumario:BACKGROUND: Rest/stress myocardial CT perfusion (CTP) has high diagnostic value for coronary artery disease (CAD), but the additional value of resting CTP especially dual-energy CTP (DE-CTP) beyond coronary CT angiography (CCTA) in chest pain triage remains unclear. We aimed to evaluate the diagnostic accuracy of resting myocardial DE-CTP, and additional value in detecting CAD beyond CCTA (obstructive stenosis: ≥ 50%) in patients suspected of CAD. METHODS: In this prespecified subanalysis of 54 patients, we included patients suspected of CAD referred to invasive coronary angiography (ICA). Diagnostic accuracy of resting myocardial DE-CTP in detecting myocardial perfusion defects was assessed using resting (13)N-ammonia positron emission tomography (PET) as the gold standard. Diagnostic accuracy of cardiac dual-energy CT in detecting flow-limiting stenoses (justifying revascularization) by CCTA combined with resting myocardial DE-CTP, using ICA plus resting (13)N-ammonia PET as the gold standard. The CCTA and DE-CTP datasets derived from a single-phase scan performed with dual-energy mode. RESULTS: For detecting myocardial perfusion defects, DE-CTP demonstrated high diagnostic accuracy with a sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of 95.52%, 85.93%, and 0.907 on a per-segment basis. For detecting flow-limiting stenoses by CCTA alone, sensitivity, specificity, and AUC were 100%, 56.47%, and 0.777 respectively on a per-vessel basis. For detecting flow-limiting stenoses by CCTA combined with resting myocardial DE-CTP, sensitivity, specificity, and AUC were 96.10%, 95.29% and 0.956 respectively on a per-vessel basis. Additionally, CCTA combined with resting myocardial DE-CTP detected five patients (9%) with no obstructive stenosis but with myocardial perfusion defects confirmed by ICA plus (13)N-ammonia PET. CONCLUSIONS: Resting cardiac DE-CTP demonstrates a high diagnostic accuracy in detecting myocardial perfusion defects and provides an additional clinical value by reducing rates of false-positive and false-negative patients beyond CCTA in patients suspected of CAD.