Cargando…
Development and validation of nomogram to predict very early recurrence of combined hepatocellular-cholangiocarcinoma after hepatic resection: a multi-institutional study
BACKGROUND AND OBJECTIVES: Combined hepatocellular cholangiocarcinoma (cHCC) has a high incidence of early recurrence. The objective of this study is to construct a model predicting very early recurrence (VER) (i.e., recurrence within 6 months after surgery) of cHCC. METHODS: One hundred thirty-one...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883704/ https://www.ncbi.nlm.nih.gov/pubmed/35227269 http://dx.doi.org/10.1186/s12957-022-02536-y |
Sumario: | BACKGROUND AND OBJECTIVES: Combined hepatocellular cholangiocarcinoma (cHCC) has a high incidence of early recurrence. The objective of this study is to construct a model predicting very early recurrence (VER) (i.e., recurrence within 6 months after surgery) of cHCC. METHODS: One hundred thirty-one consecutive patients from Eastern Hepatobiliary Surgery Hospital served as a development cohort to construct a nomogram predicting VER by using multi-variable logistic regression analysis. The model was internally and externally validated in a validation cohort of 90 patients from Mengchao Hepatobiliary Hospital using the C concordance statistic, calibration analysis, and decision curve analysis (DCA). RESULTS: The VER nomogram contains microvascular invasion (MiVI), macrovascular invasion (MaVI), and CA19-9 > 25 mAU/mL. The model shows good discrimination with C-indexes of 0.77 (95% CI: 0.69–0.85) and 0.76 (95% CI: 0.66–0.86) in the development cohort and validation cohort respectively. Decision curve analysis demonstrated that the model is clinically useful and the calibration of our model was favorable. Our model stratified patients into two different risk groups, which exhibited significantly different VER. CONCLUSIONS: Our model demonstrated favorable performance in predicting VER in cHCC patients. |
---|