Cargando…
COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms
Early diagnosis of COVID-19, the new coronavirus disease, is considered important for the treatment and control of this disease. The diagnosis of COVID-19 is based on two basic approaches of laboratory and chest radiography, and there has been a significant increase in studies performed in recent mo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8884105/ https://www.ncbi.nlm.nih.gov/pubmed/35250180 http://dx.doi.org/10.1007/s00521-022-07052-4 |
Sumario: | Early diagnosis of COVID-19, the new coronavirus disease, is considered important for the treatment and control of this disease. The diagnosis of COVID-19 is based on two basic approaches of laboratory and chest radiography, and there has been a significant increase in studies performed in recent months by using chest computed tomography (CT) scans and artificial intelligence techniques. Classification of patient CT scans results in a serious loss of radiology professionals' valuable time. Considering the rapid increase in COVID-19 infections, in order to automate the analysis of CT scans and minimize this loss of time, in this paper a new method is proposed using BO (BO)-based MobilNetv2, ResNet-50 models, SVM and kNN machine learning algorithms. In this method, an accuracy of 99.37% was achieved with an average precision of 99.38%, 99.36% recall and 99.37% F-score on datasets containing COVID and non-COVID classes. When we examine the performance results of the proposed method, it is predicted that it can be used as a decision support mechanism with high classification success for the diagnosis of COVID-19 with CT scans. |
---|