Cargando…
A theoretical analysis based on causal inference and single-instance learning
Although using single-instance learning methods to solve multi-instance problems has achieved excellent performance in many tasks, the reasons for this success still lack a rigorous theoretical explanation. In particular, the potential relation between the number of causal factors (also called causa...
Autores principales: | Wang, Chao, Lu, Xuantao, Wang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8884416/ https://www.ncbi.nlm.nih.gov/pubmed/35250175 http://dx.doi.org/10.1007/s10489-022-03193-0 |
Ejemplares similares
-
Causal network perturbations for instance-specific analysis of single cell and disease samples
por: Buschur, Kristina L, et al.
Publicado: (2020) -
Interpretable instance disease prediction based on causal feature selection and effect analysis
por: Chen, YuWen, et al.
Publicado: (2022) -
ITGH: Information-Theoretic Granger Causal Inference on Heterogeneous Data
por: Behzadi, Sahar, et al.
Publicado: (2020) -
Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification
por: Bing, Lu, et al.
Publicado: (2017) -
Localized instance fusion of MRI data of Alzheimer’s disease for classification based on instance transfer ensemble learning
por: Tan, Xiaoheng, et al.
Publicado: (2018)