Cargando…
Automated seizure activity tracking and onset zone localization from scalp EEG using deep neural networks
We propose a novel neural network architecture, SZTrack, to detect and track the spatio-temporal propagation of seizure activity in multichannel EEG. SZTrack combines a convolutional neural network encoder operating on individual EEG channels with recurrent neural networks to capture the evolution o...
Autores principales: | Craley, Jeff, Jouny, Christophe, Johnson, Emily, Hsu, David, Ahmed, Raheel, Venkataraman, Archana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8884583/ https://www.ncbi.nlm.nih.gov/pubmed/35226686 http://dx.doi.org/10.1371/journal.pone.0264537 |
Ejemplares similares
-
EPViz: A flexible and lightweight visualizer to facilitate predictive modeling for multi-channel EEG
por: Currey, Danielle, et al.
Publicado: (2023) -
Classification of Scalp EEG States Prior to Clinical Seizure Onset
Publicado: (2019) -
DeepEZ: A Graph Convolutional Network for Automated Epileptogenic Zone Localization From Resting-State fMRI Connectivity
por: Nandakumar, Naresh, et al.
Publicado: (2023) -
Neuromorphic Architecture Accelerated Automated Seizure Detection in Multi-Channel Scalp EEG
por: Ambati, Ravi, et al.
Publicado: (2022) -
Extracting seizure onset from surface EEG with independent component analysis: Insights from simultaneous scalp and intracerebral EEG
por: Barborica, Andrei, et al.
Publicado: (2021)