Cargando…
Evolving Long Short-Term Memory Network-Based Text Classification
Recently, long short-term memory (LSTM) networks are extensively utilized for text classification. Compared to feed-forward neural networks, it has feedback connections, and thus, it has the ability to learn long-term dependencies. However, the LSTM networks suffer from the parameter tuning problem....
Autores principales: | Singh, Arjun, Dargar, Shashi Kant, Gupta, Amit, Kumar, Ashish, Srivastava, Atul Kumar, Srivastava, Mitali, Kumar Tiwari, Pradeep, Ullah, Mohammad Aman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885205/ https://www.ncbi.nlm.nih.gov/pubmed/35237308 http://dx.doi.org/10.1155/2022/4725639 |
Ejemplares similares
-
Retracted: Evolving Long Short-Term Memory Network-Based Text Classification
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Design and analysis of IGZO thin film transistor for AMOLED pixel circuit using double-gate tri active layer channel
por: Dargar, Shashi K., et al.
Publicado: (2019) -
Commentary: Managing treatment-resistant polypoidal choroidal vasculopathy – Evolving concepts
por: Agarwal, Divya, et al.
Publicado: (2022) -
A Novel Zernike Moment-Based Real-Time Head Pose and Gaze Estimation Framework for Accuracy-Sensitive Applications
por: Vankayalapati, Hima Deepthi, et al.
Publicado: (2022) -
An Energy-Efficient Strategy and Secure VM Placement Algorithm in Cloud Computing
por: Srivastava, Devesh Kumar, et al.
Publicado: (2022)