Cargando…
Operational Scheduling of Behind-the-Meter Storage Systems Based on Multiple Nonstationary Decomposition and Deep Convolutional Neural Network for Price Forecasting
In the competitive electricity market, electricity price reflects the relationship between power supply and demand and plays an important role in the strategic behavior of market players. With the development of energy storage systems after watt-hour meter, accurate price prediction becomes more and...
Autores principales: | Deng, Zhuofu, Qi, Xianglong, Xu, Tengteng, Zheng, Yingnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885206/ https://www.ncbi.nlm.nih.gov/pubmed/35237313 http://dx.doi.org/10.1155/2022/9326856 |
Ejemplares similares
-
Nonstationary signal extraction based on BatOMP sparse decomposition technique
por: Ge, Shuang-chao, et al.
Publicado: (2021) -
Data-driven nonstationary signal decomposition approaches: a comparative analysis
por: Eriksen, Thomas, et al.
Publicado: (2023) -
Climate Cycles and Forecasts of Cutaneous Leishmaniasis, a Nonstationary Vector-Borne Disease
por: Chaves, Luis Fernando, et al.
Publicado: (2006) -
Nonstationary time series forecasting using optimized-EVDHM-ARIMA for COVID-19
por: Nagvanshi, Suraj Singh, et al.
Publicado: (2023) -
Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network
por: Staffini, Alessio
Publicado: (2022)