Cargando…

Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium

The magnetohydrodynamics (MHD) viscous Jeffrey heat transport flow past a permeable extending sheet is analyzed. The Alumina ([Formula: see text] ) is chosen as nanoparticles immersed in sodium alginate ([Formula: see text] ) as the based fluid. The effect of heat generation, Ohmic heating and visco...

Descripción completa

Detalles Bibliográficos
Autores principales: Shahzad, Faisal, Jamshed, Wasim, Nisar, Kottakkaran Sooppy, Nasir, Nor Ain Azeany Mohd, Safdar, Rabia, Abdel-Aty, Abdel-Haleem, Yahia, I. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885681/
https://www.ncbi.nlm.nih.gov/pubmed/35228571
http://dx.doi.org/10.1038/s41598-022-06983-1
_version_ 1784660491713380352
author Shahzad, Faisal
Jamshed, Wasim
Nisar, Kottakkaran Sooppy
Nasir, Nor Ain Azeany Mohd
Safdar, Rabia
Abdel-Aty, Abdel-Haleem
Yahia, I. S.
author_facet Shahzad, Faisal
Jamshed, Wasim
Nisar, Kottakkaran Sooppy
Nasir, Nor Ain Azeany Mohd
Safdar, Rabia
Abdel-Aty, Abdel-Haleem
Yahia, I. S.
author_sort Shahzad, Faisal
collection PubMed
description The magnetohydrodynamics (MHD) viscous Jeffrey heat transport flow past a permeable extending sheet is analyzed. The Alumina ([Formula: see text] ) is chosen as nanoparticles immersed in sodium alginate ([Formula: see text] ) as the based fluid. The effect of heat generation, Ohmic heating and viscous dissipation are also being investigated adopting Tiwari and Das model. The adequate similarity transformation is used to convert the governing equations to non-linear of higher-order ordinary differential equations (ODEs). The numerical solution of the transformed ODEs is accomplished using a finite-difference technique. The results are described in graphs according to selected parameters’ values provided. The flow velocity reductions when the porosity parameter is augmented. The thermal distribution is affected by the presence of [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] . Deborah number and the volume fraction of nanoparticles affect the skin friction coefficient in opposite ways. A higher volume percentage of nanoparticles and a higher Deborah number are both shown to boost the rate of heat transfer. These findings suggest that the concentration of nanoparticles can be used to manipulate heat transport and nanofluid motions.
format Online
Article
Text
id pubmed-8885681
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88856812022-03-01 Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium Shahzad, Faisal Jamshed, Wasim Nisar, Kottakkaran Sooppy Nasir, Nor Ain Azeany Mohd Safdar, Rabia Abdel-Aty, Abdel-Haleem Yahia, I. S. Sci Rep Article The magnetohydrodynamics (MHD) viscous Jeffrey heat transport flow past a permeable extending sheet is analyzed. The Alumina ([Formula: see text] ) is chosen as nanoparticles immersed in sodium alginate ([Formula: see text] ) as the based fluid. The effect of heat generation, Ohmic heating and viscous dissipation are also being investigated adopting Tiwari and Das model. The adequate similarity transformation is used to convert the governing equations to non-linear of higher-order ordinary differential equations (ODEs). The numerical solution of the transformed ODEs is accomplished using a finite-difference technique. The results are described in graphs according to selected parameters’ values provided. The flow velocity reductions when the porosity parameter is augmented. The thermal distribution is affected by the presence of [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] . Deborah number and the volume fraction of nanoparticles affect the skin friction coefficient in opposite ways. A higher volume percentage of nanoparticles and a higher Deborah number are both shown to boost the rate of heat transfer. These findings suggest that the concentration of nanoparticles can be used to manipulate heat transport and nanofluid motions. Nature Publishing Group UK 2022-02-28 /pmc/articles/PMC8885681/ /pubmed/35228571 http://dx.doi.org/10.1038/s41598-022-06983-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Shahzad, Faisal
Jamshed, Wasim
Nisar, Kottakkaran Sooppy
Nasir, Nor Ain Azeany Mohd
Safdar, Rabia
Abdel-Aty, Abdel-Haleem
Yahia, I. S.
Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium
title Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium
title_full Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium
title_fullStr Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium
title_full_unstemmed Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium
title_short Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium
title_sort thermal analysis for [formula: see text] –sodium alginate magnetized jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885681/
https://www.ncbi.nlm.nih.gov/pubmed/35228571
http://dx.doi.org/10.1038/s41598-022-06983-1
work_keys_str_mv AT shahzadfaisal thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium
AT jamshedwasim thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium
AT nisarkottakkaransooppy thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium
AT nasirnorainazeanymohd thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium
AT safdarrabia thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium
AT abdelatyabdelhaleem thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium
AT yahiais thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium