Cargando…
Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium
The magnetohydrodynamics (MHD) viscous Jeffrey heat transport flow past a permeable extending sheet is analyzed. The Alumina ([Formula: see text] ) is chosen as nanoparticles immersed in sodium alginate ([Formula: see text] ) as the based fluid. The effect of heat generation, Ohmic heating and visco...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885681/ https://www.ncbi.nlm.nih.gov/pubmed/35228571 http://dx.doi.org/10.1038/s41598-022-06983-1 |
_version_ | 1784660491713380352 |
---|---|
author | Shahzad, Faisal Jamshed, Wasim Nisar, Kottakkaran Sooppy Nasir, Nor Ain Azeany Mohd Safdar, Rabia Abdel-Aty, Abdel-Haleem Yahia, I. S. |
author_facet | Shahzad, Faisal Jamshed, Wasim Nisar, Kottakkaran Sooppy Nasir, Nor Ain Azeany Mohd Safdar, Rabia Abdel-Aty, Abdel-Haleem Yahia, I. S. |
author_sort | Shahzad, Faisal |
collection | PubMed |
description | The magnetohydrodynamics (MHD) viscous Jeffrey heat transport flow past a permeable extending sheet is analyzed. The Alumina ([Formula: see text] ) is chosen as nanoparticles immersed in sodium alginate ([Formula: see text] ) as the based fluid. The effect of heat generation, Ohmic heating and viscous dissipation are also being investigated adopting Tiwari and Das model. The adequate similarity transformation is used to convert the governing equations to non-linear of higher-order ordinary differential equations (ODEs). The numerical solution of the transformed ODEs is accomplished using a finite-difference technique. The results are described in graphs according to selected parameters’ values provided. The flow velocity reductions when the porosity parameter is augmented. The thermal distribution is affected by the presence of [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] . Deborah number and the volume fraction of nanoparticles affect the skin friction coefficient in opposite ways. A higher volume percentage of nanoparticles and a higher Deborah number are both shown to boost the rate of heat transfer. These findings suggest that the concentration of nanoparticles can be used to manipulate heat transport and nanofluid motions. |
format | Online Article Text |
id | pubmed-8885681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88856812022-03-01 Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium Shahzad, Faisal Jamshed, Wasim Nisar, Kottakkaran Sooppy Nasir, Nor Ain Azeany Mohd Safdar, Rabia Abdel-Aty, Abdel-Haleem Yahia, I. S. Sci Rep Article The magnetohydrodynamics (MHD) viscous Jeffrey heat transport flow past a permeable extending sheet is analyzed. The Alumina ([Formula: see text] ) is chosen as nanoparticles immersed in sodium alginate ([Formula: see text] ) as the based fluid. The effect of heat generation, Ohmic heating and viscous dissipation are also being investigated adopting Tiwari and Das model. The adequate similarity transformation is used to convert the governing equations to non-linear of higher-order ordinary differential equations (ODEs). The numerical solution of the transformed ODEs is accomplished using a finite-difference technique. The results are described in graphs according to selected parameters’ values provided. The flow velocity reductions when the porosity parameter is augmented. The thermal distribution is affected by the presence of [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] . Deborah number and the volume fraction of nanoparticles affect the skin friction coefficient in opposite ways. A higher volume percentage of nanoparticles and a higher Deborah number are both shown to boost the rate of heat transfer. These findings suggest that the concentration of nanoparticles can be used to manipulate heat transport and nanofluid motions. Nature Publishing Group UK 2022-02-28 /pmc/articles/PMC8885681/ /pubmed/35228571 http://dx.doi.org/10.1038/s41598-022-06983-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Shahzad, Faisal Jamshed, Wasim Nisar, Kottakkaran Sooppy Nasir, Nor Ain Azeany Mohd Safdar, Rabia Abdel-Aty, Abdel-Haleem Yahia, I. S. Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium |
title | Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium |
title_full | Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium |
title_fullStr | Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium |
title_full_unstemmed | Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium |
title_short | Thermal analysis for [Formula: see text] –sodium alginate magnetized Jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium |
title_sort | thermal analysis for [formula: see text] –sodium alginate magnetized jeffrey’s nanofluid flow past a stretching sheet embedded in a porous medium |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885681/ https://www.ncbi.nlm.nih.gov/pubmed/35228571 http://dx.doi.org/10.1038/s41598-022-06983-1 |
work_keys_str_mv | AT shahzadfaisal thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium AT jamshedwasim thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium AT nisarkottakkaransooppy thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium AT nasirnorainazeanymohd thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium AT safdarrabia thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium AT abdelatyabdelhaleem thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium AT yahiais thermalanalysisforformulaseetextsodiumalginatemagnetizedjeffreysnanofluidflowpastastretchingsheetembeddedinaporousmedium |