Cargando…
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
Predictive models for clinical outcomes that are accurate on average in a patient population may underperform drastically for some subpopulations, potentially introducing or reinforcing inequities in care access and quality. Model training approaches that aim to maximize worst-case model performance...
Autores principales: | Pfohl, Stephen R., Zhang, Haoran, Xu, Yizhe, Foryciarz, Agata, Ghassemi, Marzyeh, Shah, Nigam H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885701/ https://www.ncbi.nlm.nih.gov/pubmed/35228563 http://dx.doi.org/10.1038/s41598-022-07167-7 |
Ejemplares similares
-
Evaluating algorithmic fairness in the presence of clinical guidelines: the case of atherosclerotic cardiovascular disease risk estimation
por: Foryciarz, Agata, et al.
Publicado: (2022) -
Clinical utility gains from incorporating comorbidity and geographic location information into risk estimation equations for atherosclerotic cardiovascular disease
por: Xu, Yizhe, et al.
Publicado: (2023) -
Is the worst of the pandemic over for Europe?
Publicado: (2021) -
Improving the Earthquake Resilience of Buildings: The worst case approach
por: Takewaki, Izuru, et al.
Publicado: (2013) -
The worst is not, so long as we can say “this is the worst”
por: Bate, Jonathan
Publicado: (2020)