Cargando…
Transient measurement of phononic states with covariance-based stochastic spectroscopy
We present a novel approach to transient Raman spectroscopy, which combines stochastic probe pulses and a covariance-based detection to measure stimulated Raman signals in alpha-quartz. A coherent broadband pump is used to simultaneously impulsively excite a range of different phonon modes, and the...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885707/ https://www.ncbi.nlm.nih.gov/pubmed/35228519 http://dx.doi.org/10.1038/s41377-022-00727-6 |
Sumario: | We present a novel approach to transient Raman spectroscopy, which combines stochastic probe pulses and a covariance-based detection to measure stimulated Raman signals in alpha-quartz. A coherent broadband pump is used to simultaneously impulsively excite a range of different phonon modes, and the phase, amplitude, and energy of each mode are independently recovered as a function of the pump–probe delay by a noisy-probe and covariance-based analysis. Our experimental results and the associated theoretical description demonstrate the feasibility of 2D-Raman experiments based on the stochastic-probe schemes, with new capabilities not available in equivalent mean-value-based 2D-Raman techniques. This work unlocks the gate for nonlinear spectroscopies to capitalize on the information hidden within the noise and overlooked by a mean-value analysis. |
---|