Cargando…
Feature engineering solution with structured query language analytic functions in detecting electricity frauds using machine learning
Detecting fraud related to electricity consumption is usually a difficult challenge as the input datasets are sometimes unreliable due to missing and inconsistent records, faults, misinterpretation of meter reading remarks, status, etc. In this paper, we obtain meaningful insights from fraud detecti...
Autores principales: | Oprea, Simona-Vasilica, Bâra, Adela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8885834/ https://www.ncbi.nlm.nih.gov/pubmed/35228648 http://dx.doi.org/10.1038/s41598-022-07337-7 |
Ejemplares similares
-
How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania
por: Bâra, Adela, et al.
Publicado: (2023) -
A Novel Feature-Engineered–NGBoost Machine-Learning Framework for Fraud Detection in Electric Power Consumption Data
por: Hussain, Saddam, et al.
Publicado: (2021) -
Developing a Mixed Neural Network Approach to Forecast the Residential Electricity Consumption Based on Sensor Recorded Data
por: Oprea, Simona-Vasilica, et al.
Publicado: (2018) -
Feature engineering for machine learning and data analytics
por: Dong, Guozhu, et al.
Publicado: (2018) -
Fraud and fraud detection: a data analytics approach
por: Gee, Sunder
Publicado: (2015)