Cargando…
Modality specific U-Net variants for biomedical image segmentation: a survey
With the advent of advancements in deep learning approaches, such as deep convolution neural network, residual neural network, adversarial network; U-Net architectures are most widely utilized in biomedical image segmentation to address the automation in identification and detection of the target re...
Autores principales: | Punn, Narinder Singh, Agarwal, Sonali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886195/ https://www.ncbi.nlm.nih.gov/pubmed/35250146 http://dx.doi.org/10.1007/s10462-022-10152-1 |
Ejemplares similares
-
CHS-Net: A Deep Learning Approach for Hierarchical Segmentation of COVID-19 via CT Images
por: Punn, Narinder Singh, et al.
Publicado: (2022) -
Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks
por: Punn, Narinder Singh, et al.
Publicado: (2020) -
Modality preserving U-Net for segmentation of multimodal medical images
por: Wu, Bingxuan, et al.
Publicado: (2023) -
PyConvU-Net: a lightweight and multiscale network for biomedical image segmentation
por: Li, Changyong, et al.
Publicado: (2021) -
AID-U-Net: An Innovative Deep Convolutional Architecture for Semantic Segmentation of Biomedical Images
por: Tashk, Ashkan, et al.
Publicado: (2022)