Cargando…
Effective and scalable single-cell data alignment with non-linear canonical correlation analysis
Data alignment is one of the first key steps in single cell analysis for integrating multiple datasets and performing joint analysis across studies. Data alignment is challenging in extremely large datasets, however, as the major of the current single cell data alignment methods are not computationa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887421/ https://www.ncbi.nlm.nih.gov/pubmed/34871454 http://dx.doi.org/10.1093/nar/gkab1147 |
Sumario: | Data alignment is one of the first key steps in single cell analysis for integrating multiple datasets and performing joint analysis across studies. Data alignment is challenging in extremely large datasets, however, as the major of the current single cell data alignment methods are not computationally efficient. Here, we present VIPCCA, a computational framework based on non-linear canonical correlation analysis for effective and scalable single cell data alignment. VIPCCA leverages both deep learning for effective single cell data modeling and variational inference for scalable computation, thus enabling powerful data alignment across multiple samples, multiple data platforms, and multiple data types. VIPCCA is accurate for a range of alignment tasks including alignment between single cell RNAseq and ATACseq datasets and can easily accommodate millions of cells, thereby providing researchers unique opportunities to tackle challenges emerging from large-scale single-cell atlas. |
---|