Cargando…
Visual attention prediction improves performance of autonomous drone racing agents
Humans race drones faster than neural networks trained for end-to-end autonomous flight. This may be related to the ability of human pilots to select task-relevant visual information effectively. This work investigates whether neural networks capable of imitating human eye gaze behavior and attentio...
Autores principales: | Pfeiffer, Christian, Wengeler, Simon, Loquercio, Antonio, Scaramuzza, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887736/ https://www.ncbi.nlm.nih.gov/pubmed/35231038 http://dx.doi.org/10.1371/journal.pone.0264471 |
Ejemplares similares
-
Champion-level drone racing using deep reinforcement learning
por: Kaufmann, Elia, et al.
Publicado: (2023) -
AlphaPilot: autonomous drone racing
por: Foehn, Philipp, et al.
Publicado: (2021) -
DeepPilot: A CNN for Autonomous Drone Racing
por: Rojas-Perez, Leticia Oyuki, et al.
Publicado: (2020) -
Towards Autonomous Drone Racing without GPU Using an OAK-D Smart Camera
por: Rojas-Perez, Leticia Oyuki, et al.
Publicado: (2021) -
Vision-Less Sensing for Autonomous Micro-Drones †
por: Pikalov, Simon, et al.
Publicado: (2021)