Cargando…
Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans
Studies of key metabolite variations and their biological mechanisms in cerebral infarction (CI) have increased our understanding of the pathophysiology of the disease. However, how metabolite variations in different periods of CI influence these biological processes and whether key metabolites from...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887861/ https://www.ncbi.nlm.nih.gov/pubmed/35242810 http://dx.doi.org/10.3389/fmolb.2021.784288 |
_version_ | 1784660991894618112 |
---|---|
author | Chen, Guoyou Guo, Li Zhao, Xinjie Ren, Yachao Chen, Hongyang Liu, Jincheng Jiang, Jiaqi Liu, Peijia Liu, Xiaoying Hu, Bo Wang, Na Peng, Haisheng Xu, Guowang Tao, Haiquan |
author_facet | Chen, Guoyou Guo, Li Zhao, Xinjie Ren, Yachao Chen, Hongyang Liu, Jincheng Jiang, Jiaqi Liu, Peijia Liu, Xiaoying Hu, Bo Wang, Na Peng, Haisheng Xu, Guowang Tao, Haiquan |
author_sort | Chen, Guoyou |
collection | PubMed |
description | Studies of key metabolite variations and their biological mechanisms in cerebral infarction (CI) have increased our understanding of the pathophysiology of the disease. However, how metabolite variations in different periods of CI influence these biological processes and whether key metabolites from different periods may better predict disease progression are still unknown. We performed a systematic investigation using the metabonomics method. Various metabolites in different pathways were investigated by serum metabolic profiling of 143 patients diagnosed with CI and 59 healthy controls. Phe-Phe, carnitine C18:1, palmitic acid, cis-8,11,14-eicosatrienoic acid, palmitoleic acid, 1-linoleoyl-rac-glycerol, MAG 18:1, MAG 20:3, phosphoric acid, 5α-dihydrotestosterone, Ca, K, and GGT were the major components in the early period of CI. GCDCA, glycocholate, PC 36:5, LPC 18:2, and PA showed obvious changes in the intermediate time. In contrast, trans-vaccenic acid, linolenic acid, linoleic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, arachidonic acid, DHA, FFA 18:1, FFA 18:2, FFA 18:3, FFA 20:4, FFA 22:6, PC 34:1, PC 36:3, PC 38:4, ALP, and Crea displayed changes in the later time. More importantly, we found that phenylalanine metabolism, medium-chain acylcarnitines, long-chain acylcarnitines, choline, DHEA, LPC 18:0, LPC 18:1, FFA 18:0, FFA 22:4, TG, ALB, IDBIL, and DBIL played vital roles in the development of different periods of CI. Increased phenylacetyl-L-glutamine was detected and may be a biomarker for CI. It was of great significance that we identified key metabolic pathways and risk metabolites in different periods of CI different from those previously reported. Specific data are detailed in the Conclusion section. In addition, we also explored metabolite differences of CI patients complicated with high blood glucose compared with healthy controls. Further work in this area may inform personalized treatment approaches in clinical practice for CI by experimentally elucidating the pathophysiological mechanisms. |
format | Online Article Text |
id | pubmed-8887861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88878612022-03-02 Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans Chen, Guoyou Guo, Li Zhao, Xinjie Ren, Yachao Chen, Hongyang Liu, Jincheng Jiang, Jiaqi Liu, Peijia Liu, Xiaoying Hu, Bo Wang, Na Peng, Haisheng Xu, Guowang Tao, Haiquan Front Mol Biosci Molecular Biosciences Studies of key metabolite variations and their biological mechanisms in cerebral infarction (CI) have increased our understanding of the pathophysiology of the disease. However, how metabolite variations in different periods of CI influence these biological processes and whether key metabolites from different periods may better predict disease progression are still unknown. We performed a systematic investigation using the metabonomics method. Various metabolites in different pathways were investigated by serum metabolic profiling of 143 patients diagnosed with CI and 59 healthy controls. Phe-Phe, carnitine C18:1, palmitic acid, cis-8,11,14-eicosatrienoic acid, palmitoleic acid, 1-linoleoyl-rac-glycerol, MAG 18:1, MAG 20:3, phosphoric acid, 5α-dihydrotestosterone, Ca, K, and GGT were the major components in the early period of CI. GCDCA, glycocholate, PC 36:5, LPC 18:2, and PA showed obvious changes in the intermediate time. In contrast, trans-vaccenic acid, linolenic acid, linoleic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, arachidonic acid, DHA, FFA 18:1, FFA 18:2, FFA 18:3, FFA 20:4, FFA 22:6, PC 34:1, PC 36:3, PC 38:4, ALP, and Crea displayed changes in the later time. More importantly, we found that phenylalanine metabolism, medium-chain acylcarnitines, long-chain acylcarnitines, choline, DHEA, LPC 18:0, LPC 18:1, FFA 18:0, FFA 22:4, TG, ALB, IDBIL, and DBIL played vital roles in the development of different periods of CI. Increased phenylacetyl-L-glutamine was detected and may be a biomarker for CI. It was of great significance that we identified key metabolic pathways and risk metabolites in different periods of CI different from those previously reported. Specific data are detailed in the Conclusion section. In addition, we also explored metabolite differences of CI patients complicated with high blood glucose compared with healthy controls. Further work in this area may inform personalized treatment approaches in clinical practice for CI by experimentally elucidating the pathophysiological mechanisms. Frontiers Media S.A. 2022-02-15 /pmc/articles/PMC8887861/ /pubmed/35242810 http://dx.doi.org/10.3389/fmolb.2021.784288 Text en Copyright © 2022 Chen, Guo, Zhao, Ren, Chen, Liu, Jiang, Liu, Liu, Hu, Wang, Peng, Xu and Tao. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Chen, Guoyou Guo, Li Zhao, Xinjie Ren, Yachao Chen, Hongyang Liu, Jincheng Jiang, Jiaqi Liu, Peijia Liu, Xiaoying Hu, Bo Wang, Na Peng, Haisheng Xu, Guowang Tao, Haiquan Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans |
title | Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans |
title_full | Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans |
title_fullStr | Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans |
title_full_unstemmed | Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans |
title_short | Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans |
title_sort | serum metabonomics reveals risk factors in different periods of cerebral infarction in humans |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887861/ https://www.ncbi.nlm.nih.gov/pubmed/35242810 http://dx.doi.org/10.3389/fmolb.2021.784288 |
work_keys_str_mv | AT chenguoyou serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT guoli serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT zhaoxinjie serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT renyachao serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT chenhongyang serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT liujincheng serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT jiangjiaqi serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT liupeijia serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT liuxiaoying serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT hubo serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT wangna serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT penghaisheng serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT xuguowang serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans AT taohaiquan serummetabonomicsrevealsriskfactorsindifferentperiodsofcerebralinfarctioninhumans |