Cargando…
COVID-19 mortality risk assessments for individuals with and without diabetes mellitus: Machine learning models integrated with interpretation framework
This research develops machine learning models equipped with interpretation modules for mortality risk prediction and stratification in cohorts of hospitalised coronavirus disease-2019 (COVID-19) patients with and without diabetes mellitus (DM). To this end, routinely collected clinical data from 15...
Autores principales: | Khadem, Heydar, Nemat, Hoda, Eissa, Mohammad R., Elliott, Jackie, Benaissa, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887960/ https://www.ncbi.nlm.nih.gov/pubmed/35255295 http://dx.doi.org/10.1016/j.compbiomed.2022.105361 |
Ejemplares similares
-
Interpretable Machine Learning for Inpatient COVID-19 Mortality Risk Assessments: Diabetes Mellitus Exclusive Interplay
por: Khadem, Heydar, et al.
Publicado: (2022) -
Blood Glucose Level Time Series Forecasting: Nested Deep Ensemble Learning Lag Fusion
por: Khadem, Heydar, et al.
Publicado: (2023) -
Automatic inference of hypoglycemia causes in type 1 diabetes: a feasibility study
por: Zaitcev, Aleksandr, et al.
Publicado: (2023) -
Corrigendum: Automatic inference of hypoglycemia causes in type 1 diabetes: a feasibility study
por: Zaitcev, Aleksandr, et al.
Publicado: (2023) -
Analysis of real‐world capillary blood glucose data to help reduce HbA(1c)
and hypoglycaemia in type 1 diabetes: Evidence in favour of using the percentage of readings in target and coefficient of variation
por: Eissa, Mohammad R., et al.
Publicado: (2022)