Cargando…
Copyright protection of deep neural network models using digital watermarking: a comparative study
Nowadays, deep learning achieves higher levels of accuracy than ever before. This evolution makes deep learning crucial for applications that care for safety, like self-driving cars and helps consumers to meet most of their expectations. Further, Deep Neural Networks (DNNs) are powerful approaches t...
Autores principales: | Fkirin, Alaa, Attiya, Gamal, El-Sayed, Ayman, Shouman, Marwa A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888024/ https://www.ncbi.nlm.nih.gov/pubmed/35250360 http://dx.doi.org/10.1007/s11042-022-12566-z |
Ejemplares similares
-
Combining Digital Watermarking and Fingerprinting Techniques to Identify Copyrights for Color Images
por: Hsieh, Shang-Lin, et al.
Publicado: (2014) -
A Hybrid Robust Image Watermarking Method Based on DWT-DCT and SIFT for Copyright Protection
por: Hamidi, Mohamed, et al.
Publicado: (2021) -
An indirect watermark hiding in discrete cosine transform–singular value decomposition domain for copyright protection
por: Roy, Soumitra, et al.
Publicado: (2017) -
Protecting IP of Deep Neural Networks with Watermarking: A New Label Helps
por: Zhong, Qi, et al.
Publicado: (2020) -
Digital Hologram Watermarking Based on Multiple Deep Neural Networks Training Reconstruction and Attack
por: Kang, Ji-Won, et al.
Publicado: (2021)